3 Port Pilot Operated Poppet Solenoid Valve Rubber Seal

Series VP300/500/700

How to Order

V100

How to Order Pilot Valve Assembly

	Electrical entry
G	Grommet
E	Grommet terminal
T	Conduit terminal
D	DIN terminal
Y	DIN terminal: DIN43650B

Pilot Valve Assembly and Electrical Entry

Symbol	Electrical entry	Symbol	Electrical entry
G		GS	Surge voltage suppressor
E		EZ	Surge voltage suppressor Indicator light
T	$\xrightarrow[\square=7]{\square 7^{9}}$	TZ	Surge voltage suppressor Indicator light
$\begin{aligned} & \mathbf{D} \\ & \mathbf{Y} \end{aligned}$		$\begin{aligned} & \text { DZ } \\ & \text { YZ } \end{aligned}$	

Series VP300/500/700

Low power consumption 1.8 W (DC)

Possible to use as either a selector or divider valve
Changeable from normally closed type to normally open type

Suitable for use in vacuum

 applicationsUp to - 101.2 kPa

Specifications

Fluid	Air		
Type of actuation	N.C. or N.O. (Convertible)		
Pilot type	Internal pilot	External pilot	
Operating pressure range (MPa)	0.2 to 0.8	Inlet pressure	-101.2 kPa to 0.8
		External pilot pressure	Same as supply pressure: Min. 0.2
Ambient and fluid temperature (${ }^{\circ} \mathrm{C}$)	-10 to 50 (No freezing. Refer to page 4-18-4.)		
Response time (ms) ${ }^{(1)}$	30 or less (at 0.5 MPa)		
Max. operating frequency (Hz)	5		
Lubrication	Not required (Use turbine oil Class 1 ISO VG32, if lubricated.)		
Manual override	Non-locking push type		
Manual override	Locking type (Slotted), Locking type (Manual)		
Mounting orientation	Unrestricted		
Shock/Vibration resistance ($\left.\mathrm{m} / \mathrm{s}^{2}\right)^{(2)}$	300/50		

Note 1) Based on dynamic performance test, JIS B 8374-1981. (Coil temperature: $20^{\circ} \mathrm{C}$, at rated voltage, without surge suppressor)
Note 2) Impact resistance: No malfunction occurred when it is tested with a drop tester in the axial direction and at the right angles to the main valve and armature in both energized and de-energized states every once for each condition. (Values at the initial period)
Vibration resistance: No malfunction occurred in a one-sweep test between 45 and 2000 Hz . Test was performed at both energized and deenergized states in the axial direction and at the right angles to the main valve and armature. (Values at the initial period)

Electrical entry		Grommet (G), Grommet terminal (E), Conduit terminal (T), DIN terminal (D, Y)
Coil rated voltage (V)	AC ($50 / 60 \mathrm{~Hz}$)	100, 200, 12*, 24*, 48*, 110^{*} to 120*, 220*, $240 *$
	DC	24, 6*, 12*, 48*, 100*, 110*
Allowable voltage fluctuation		-15 to $+10 \%$ of rated voltage
Apparent power (VA) ${ }^{\text {Note) }}$	AC ${ }^{\text {In }}$ Inrush	5.6 (50 Hz) , 5.0 (60 Hz)
	AC Holding	3.4 (50 Hz) , 2.3 (60 Hz)
Power consumption (W) Note)	DC	1.8,2 (With indicator light)

> Option Note) At rated voltage

Option

Description	Series	Part no.
Bracket (With screw)	VP342	VP300-27-1A
	VP542	VP500-27-1A
	VP742	VP700-27-1A

JIS Symbol

External Pilot (Option)

Use external pilot model in the following cases:

- For vacuum or for low pressure less than 0.2 MPa
- Please consult with SMC for use in a vacuum hold application.
- When having P port downsized in diameter
- When using A port as the atmospheric releasing port, e.g. air blower
- If manifold, external pilot piping can be centralized in manifold base.

Flow Characteristics/Weight

Series	Valve model	Port size	Flow characteristics												Weight (kg)
			$1 \rightarrow 2(P \rightarrow A)$			$2 \rightarrow 3$ (\rightarrow R)			$3 \rightarrow 2(\mathrm{R} \rightarrow \mathrm{A})$			$2 \rightarrow 1(A \rightarrow P)$			
			$\mathrm{C}\left[\mathrm{dm}^{3} /(\mathrm{s} \cdot \mathrm{bar})\right]$	b	Cv	$\mathrm{C}\left[\mathrm{dm}^{3} / \mathrm{s} \cdot \mathrm{bar}\right)$]	b	Cv	C[dm $\left.{ }^{3} /(\mathrm{s} \cdot \mathrm{bar})\right]$	b	Cv	C[dm $\left.{ }^{3} /(\mathrm{s} \cdot \mathrm{bar})\right]$	b	Cv	
Series VP300	VP342(Body ported)	1/8	3.3	0.31	0.86	3.4	0.34	0.86	2.9	0.47	0.83	3.5	0.38	0.93	0.19
		1/4	4.0	0.26	0.99	3.7	0.27	0.88	3.2	0.40	0.92	4.4	0.28	1.1	
	VP344 (Base mounted)	1/8	2.9/2.9	0.27/0.33	0.74/0.76	3.3/3.6	0.31/0.30	0.80/0.86	2.9/3.0	0.38/0.40	0.83/0.83	3.5/3.5	0.37/0.37	0.89/0.89	0.25
		1/4	3.1/2.9	0.29/0.41	0.79/0.83	4.1/4.1	0.31/0.25	1.0/1.0	2.7/3.6	0.57/0.21	0.86/0.88	4.1/3.9	0.25/0.23	1.0/0.95	
Series VP500	VP542(Body ported)	1/4	6.6	0.35	1.6	7.4	0.41	2.0	6.9	0.34	1.7	7.5	0.42	2.0	0.33
		3/8	9.1	0.42	2.4	9.0	0.43	2.4	8.8	0.36	2.2	9.3	0.43	2.5	
	VP544 (Base mounted)	1/4	6.5/7.0	0.36/0.34	1.7/1.8	7.5/7.7	0.36/0.41	1.9/2.1	7.9/7.4	0.30/0.26	1.9/1.8	7.4/7.3	0.35/0.32	1.9/1.8	0.43
		3/8	7.9/8.1	0.29/0.30	1.8/1.9	8.8/9.3	0.41/0.42	2.3/2.4	9.2/8.8	0.17/0.14	2.1/2.0	9.2/9.1	0.22/0.21	2.2/2.2	
Series VP700	VP742(Body ported)	3/8	12	0.29	2.9	12	0.36	3.1	12	0.31	3.1	13	0.36	3.4	0.64
		1/2	15	0.23	3.8	14	0.25	3.8	15	0.22	3.7	16	0.29	4.0	
	VP744 (Base mounted)	3/8	12/12	0.18/0.23	2.9/3.1	14/14	0.27/0.27	3.5/3.5	14/13	0.25/0.24	3.2/3.2	14/14	0.25/0.24	3.3/3.5	0.75
		1/2	15/14	0.19/0.18	3.5/3.3	15/16	0.26/0.28	3.8/4.0	15/15	0.24/0.23	3.6/3.7	15/15	0.22/0.24	3.8/3.6	

Note 1) Weight for body ported does not include a bracket.
Note 2) Flow characteristics of base mounted is the values for Normally closed/Normally open.

Application Example

(2) Pressure release valve
X port

(3) Selector valve

(5) Divider valve

(7) Operation of a double acting cylinder

(6) Operation of a single acting cylinder

(8) Operation of a double acting cylinder (Exhaust center)

Caution

Light/Surge Voltage Suppressor

Note) W/ surge voltage suppressor is available only for grommet type.

Electrical Connection

For grommet with surge voltage suppressor for DC specifications, please correctly connect the lead wires to positive and negative indicators on the connector.
For non-polar type such as DIN terminal or Terminal, the lead wires can be connected to either one.

Lead wire color	Red	Black
Polarity	+	-

DIN terminal or terminal

With DIN terminal block With terminal block

Piping

A pilot solenoid valve will generate a pressure drop due to the small flow upstream of the valve. It can cause the valve to malfunction. Select a fitting with an I.D. greater than $\varnothing 8$ for the VP344 and the VP342; more than ø10 for the VP544 and VP542, and more than $\varnothing 12$ for VP744 and VP742 when piping length is less than 3 meters. Use an external pilot when there is a small flow outlet of the valve.

. Precautions

Be sure to read before handling. For Safety Instructions and Solenoid Valve Precautions, refer to page 4-18-2.

Change of Actuation

\triangle Caution

1. Base mounted

N.C.

N.O.

When changing the actuation from normally closed style to normally open style, remove the body from the sub-plate and reset the " ∇ " mark on the body corresponding to the "NO" mark on the sub-plate as shown in the figure above. It is not necessary to change the piping at that time.

2. Body ported

N.C.
N.O.

When changing the actuation from normally closed type to normally open type, remove the body from the sub-plate and reset the " \mathbf{V} " mark on the body corresponding to the "NO" mark on the sub-plate as shown in the figure above. Refer to the following table for piping.

Port	P	A	R
Actuation	R.C.	Inlet	Outlet
Exhaust side			
N.O.	Exhaust side	Outlet	Inlet

Confirm the safety sufficiently and conduct carefully when changing the passage state or restarting after changes.

Change of Electrical Entry

1. Push out the body of DIN terminal from the cover, turn it and then insert it.

2. Remove pilot valve mounting screws (M3, 2 pcs.), rotate the pilot valve at 180° and then re-tighten the valve with the screw.

How to Calculate the Flow Rate
For obtaining the flow rate, refer to page 4-1-6.

\triangle Caution

How to Use DIN Terminal

1. Disassembly
1) After loosening the thread (1), then if the cover (2) is pulled in the direction of the thread, the connector will be removed from the body of equipment (solenoid, etc.).
2) Pull the screw (1) out of the housing (2).
3) On the bottom part of the terminal block (3), there's a cut-off part (9). If a small flat head screwdriver is inserted between the opening in the bottom, terminal block (3) will be removed from the cover (2).
4) Remove the cable gland (4) and plain washer (5) and rubber seal (6).

2. Wiring

1) Pass them through the cable (7) in the order of cable ground (4), washer (5), rubber seal (6), and then insert into the housing (2).
2) From the terminal block (3), loosen the screw (11), then pass the lead wire (10) through, then again tighten the screw (11).
Note) Tighten within the tightening torque of $0.5 \mathrm{~N} \cdot \mathrm{~m} \pm 15 \%$.

3. Assembly

1) Passing through the cable (7), the cable gland (4), plain washer (5), and rubber seal (6) housing (2) in this order, and then connect with the terminal block (3). After that, set the terminal block (3) on the housing (2).
(Push it down until you hear the click sound.)
2) Putting rubber seal (6), plain washer (5), in this order into the cable introducing slit on the housing (2), then further tighten the cable gland (4) securely.
3) Insert the gasket (8) or between the bottom part of terminal block (3) and a plug attached to equipment, and then screw (1) in from the top of the housing (2) to tighten it.
Note) Tighten within the tightening torque of $0.5 \mathrm{~N} \cdot \mathrm{~m} \pm 20 \%$.
Note) Connector orientation can be changed by 180 degrees depending on how to assemble the housing (2) and the terminal block (3).

Construction

Body ported

Component Parts

No.	Description	Material	Note
(1)	Body	Aluminum die-casted	Color: Platinum silver
(2)	Adapter plate	Aluminum die-casted	Color: Platinum silver
(3)	End plate	Aluminum die-casted	Color: Platinum silver
(4)	Retainer	Brass	
(5)	Spool valve	Aluminum die-casted/HNBR	
(6)	Piston	Resin	
(7)	Spring	Stainless steel	
8	Sub-plate	Aluminum die-casted	Color: Platinum silver
(9)	Pilot valve assemblies		

Replacement Parts

Series	Sub-plate	Hexagon socket head screw	Sub-plate gasket	Pilot valve assembly	¢ Caution
VP344	VP300-2-1P (Rc 1/8)	$\begin{gathered} \text { M3 } \times 0.5 \times 32 \\ \text { VP300-24-4 } \end{gathered}$	VP300-17-1		
	VP300-2-2P (Rc 1/4)				Tightening Torques
VP544	VP500-2-1P (Rc 1/4)	$\begin{aligned} & \text { M4 } \times 0.7 \times 41 \\ & \text { VP500-24-3 } \\ & \hline \end{aligned}$	VP500-17-1		M3: 0.6 N.m
	VP500-2-2P (Rc 3/8)				M4: 1.4 N.m
VP744	VP700-2-1P (Rc 3/8)	$\begin{aligned} & \text { M5 } \times 0.8 \times 50 \\ & \text { VP700-24-1 } \end{aligned}$	VP700-17-1		M5: 2.9 N.m
	VP700-2-2P (Rc 1/2)				

How to Order Sub-plate

Series VP300/500/700

Dimensions: VP300/Body Ported

Dimensions: VP300/Base Mounted

V100
SY
SYJ
VK
VZ
VT
VP
VG
VP
S070
VQ
VKF
VQZ
VZ
VS
VFN

Series VP300/500/700

Dimensions: VP500/Body Ported

Dimensions: VP500/Base Mounted

V100
SY
SYJ
VK
VZ
VT
VP
VG
VP
S070
VQ
VKF
VQZ
VZ
VS
VFN

Series VP300/500/700

Dimensions: VP700/Body Ported

Dimensions: VP700/Base Mounted

V100
SK
SYJ
WK
NZ
VT

VP

Grommet terminal (E)

\square : With light/surge voltage suppressor

Conduit terminal (T)

$\varnothing 6$ to $\varnothing 8$ MAX. 10 173.

\square : With light/surge voltage suppressor
DIN terminal (D, Y)
,
\square : With light/surge voltage suppressor

Series VP300/500/700
 Manifold Specifications

Piping is concentrated at the base side.

All external pilots are gathered in the base.

Common external, pilot port allows one piping.

2 types of exhaust ports

Select either a common or individual exhaust port. Individual exhaust type makes it possible to control the flow rate.
Easy to change switching style. (Normally Closed or Normally Open)
Switching style is easily changed from normally closed to normally open by changing the direction of the valve only 180°.

Specifications

Manifold base type	B mount single base
$R(E X H)$ type	Common EXH, Individual EXH
$P(S U P)$ type	Common SUP
Max. number of stations	Max. 20 stations Note)
Note) In the case of more than 10 stations, use 2 SUP/EXH ports to supply/exhaust pressure.	

Model

| Series | Manifold base model no. | | $\begin{array}{c}\text { Port 3 (R) } \\ \text { type }\end{array}$ | Port size |
| :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Applicable valve

model\end{array}\right]\)- Common external pilot style (VV3P \square-41R/-42R).

In the case of external pilot manifold, valve is external pilot type (standard specification).
Option

Description	Part no.	Applicable manifold base model
Blanking plate assembly (With gasket and mounting screw)	VP300-25-1A	VV3P3
	VP500-25-1A	VV3P5
	VP700-25-1A	VV3P7

How to Order

Stations

02	2 stations
\vdots	\vdots
20	20 stations

Note) Instruct by specifying the valves and blanking plate to be mounted on the manifold along with the manifold base model no.
(Example) 4 stations manifolds
VV3P3-41-041-02.......................... 1
*VV344-1G-A.................................. 3
*VV300-25-1A (Blanking plate).... 1
\rightarrow The asterisk denotes the symbol for assembly
Prefix it to the part nos. of the solenoid valve, etc.

Dimensions: VV3P3 (For N.C.)\square : With light/surge voltage suppressor (): Dimensions for external pilot

\mathbf{L} Sations	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Formula
\mathbf{L}_{1}	83.5	111	138.5	$\mathbf{1 6 6}$	193.5	$\mathbf{2 2 1}$	248.5	276	303.5	$\mathrm{~L} 1=27.5 \times \mathrm{n}+28.5$
$\mathbf{L}_{\mathbf{2}}$	68.5	96	123.5	151	178.5	206	233.5	261	288.5	$\mathrm{~L} 2=27.5 \times \mathrm{n}+13.5$

Series VP300/500/700

Dimensions: VV3P5 (For N.C.)
Common exhaust: VV3P5-41■-Stations 1-03

\square : With light/surge voltage suppressor (): Dimensions for external pilot

Stains	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Formula
\mathbf{L}_{1}	95	128	161	194	227	260	293	326	359	$\mathrm{~L} 1=33 \times \mathrm{n}+29$
$\mathbf{L}_{\mathbf{2}}$	80	113	146	179	212	245	278	311	344	$\mathrm{~L} 2=33 \times \mathrm{n}+14$

Individual exhaust: VV3P5-42■-Stations 3-03

(G)
(E)
(T)
(D, Y)
\square : With light/surge voltage suppressor (): Dimensions for external pilot

Stations	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Formula
L_{1}	95	128	161	194	227	260	293	326	359	$\mathrm{~L} 1=33 \times \mathrm{n}+29$
$\mathrm{~L}_{2}$	80	113	146	179	212	245	278	311	344	$\mathrm{~L} 2=33 \times \mathrm{n}+14$

3 Port Pilot Operated Poppet Solenoid Valve
 Rubber Seal

Dimensions: VV3P7 (For N.C.)

Common exhaust: VV3P7-41ロ-Stations 1-04

\square : With light/surge voltage suppressor (): Dimensions for external pilot| Stations | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | Formula |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{L} 1$ | 115 | 156 | 197 | 238 | 279 | 320 | 361 | 402 | 443 | $\mathrm{~L} 1=41 \times \mathrm{n}+33$ |
| $\mathbf{L} 2$ | 99 | 140 | 181 | 222 | 263 | 304 | 345 | 386 | 427 | $\mathrm{~L} 2=41 \times \mathrm{n}+17$ |

Individual exhaust: VV3P7-42■-Stations 3-04

(G)
(E)
(T)
(D, Y)
\square : With light/surge voltage suppressor (): Dimensions for external pilot

Lsations	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Formula
$\mathbf{L} 1$	115	156	197	238	279	320	361	402	443	$\mathrm{~L} 1=41 \times \mathrm{n}+33$
$\mathbf{L} 2$	99	140	181	222	263	304	345	386	427	$\mathrm{~L} 2=41 \times \mathrm{n}+17$

V100
SY
SYJ
VK
VZ
VT
VP
VG
VP
SO70
VQ
VKF
VQZ
VZ
VS
VFN

3 Port Air Operated Valve Series VPA300/500/700

How to Order

Flow Characteristics/Weight

Specifications

Fluid	Air	
Type of actuation	N.C. or N.O. (Can be switched.) Note)	
Operating pressure range (MPa)	Standard	0.2 to 0.8
	Vacuum	-101.2 kPa to 0.2
Pilot pressure (MPa)	Same as operating pressure (Min. 0.2 MPa)	
Ambient and fluid temperature $\left({ }^{\circ} \mathrm{C}\right)$	-10 to $50^{\circ} \mathrm{C}$ (No freezing. Refer to page 5-11-4.)	
Lubrication	Not required (Use turbine oil Class 1 ISO VG32, if lubricated.)	
Mounting orientation	Free	
Impact/Vibration resistance $\left(\mathrm{m} / \mathrm{s}^{2}\right)$ Note)	$30 / 50$	
Option	Bracket	VPA342: VP300-27-1A
	(With screw)	VPA542: VP500-27-1A

Note) Impact resistance: No malfunction from test using drop impact tester, to axis and right angle directions of main valve, each one time when pilot signal ON and OFF. (Value in the initial stage)
Vibration resistance: No malfunction from test with 45 to 2000 Hz one sweep, to axis and right angle direction of main valve, each one time when pilot signal ON and OFF. (Value in the initial stage)

Series	Model	Port size	Flow characteristics												Weight (kg)
			$1 \rightarrow 2(\mathrm{P} \rightarrow \mathrm{A})$			$2 \rightarrow 3$ ($\mathrm{A} \rightarrow \mathrm{R}$)			$3 \rightarrow 2(R \rightarrow A)$			$2 \rightarrow 1(A \rightarrow P)$			
			C [dm³/(s.bar)]	b	Cv	C [dm³/(s.bar)]	b	Cv	C [$\mathrm{dm}^{3} /(\mathrm{s} \cdot \mathrm{bar})$]	b	Cv	C [dm³/(s.bar)]	b	Cv	
Series VPA300	VPA342(Body ported)	1/8	3.3	0.31	0.86	3.4	0.34	0.86	2.9	0.47	0.83	3.5	0.38	0.93	0.12
		1/4	4.0	0.26	0.99	3.7	0.27	0.88	3.2	0.40	0.92	4.4	0.28	1.1	
	VPA344 (Base mounted)	1/8	2.9/2.9	0.27/0.33	0.74/0.76	3.3/3.6	0.31/0.30	0.80/0.86	2.9/3.0	0.38/0.40	0.83/0.83	3.5/3.5	0.37/0.37	0.89/0.89	0.19
		1/4	3.1/2.9	0.29/0.41	0.79/0.83	4.1/4.1	0.31/0.25	1.0/1.0	2.7/3.6	0.57/0.21	0.86/0.88	4.1/3.9	0.25/0.23	1.0/0.95	
Series VPA500	VPA542 (Body ported)	1/4	6.6	0.35	1.6	7.4	0.41	2.0	6.9	0.34	1.7	7.5	0.42	2.0	0.27
		3/8	9.1	0.42	2.4	9.0	0.43	2.4	8.8	0.36	2.2	9.3	0.43	2.5	
	VPA544(Base mounted)	1/4	6.5/7.0	0.36/0.34	1.7/1.8	7.5/7.7	0.36/0.41	1.9/2.1	7.9/7.4	0.30/0.26	1.9/1.8	7.4/7.3	0.35/0.32	1.9/1.8	0.36
		3/8	7.9/8.1	0.29/0.30	1.8/1.9	8.8/9.3	0.41/0.42	2.3/2.4	9.2/8.8	0.17/0.14	2.1/2.0	9.2/9.1	0.22/0.21	2.2/2.2	
Series VPA700	VPA742 (Body ported)	3/8	12	0.29	2.9	12	0.36	3.1	12	0.31	3.1	13	0.36	3.4	0.64
		1/2	15	0.23	3.8	14	0.25	3.8	15	0.22	3.7	16	0.29	4.0	
	VPA744 (Base mounted)	3/8	12/12	0.18/0.23	2.9/3.1	14/14	0.27/0.27	3.5/3.5	14/13	0.25/0.24	3.2/3.2	14/14	0.25/0.24	3.3/3.5	0.71
		1/2	15/14	0.19/0.18	3.5/3.3	15/16	0.26/0.28	3.8/4.0	15/15	0.24/0.23	3.6/3.7	15/15	0.22/0.24	3.8/3.6	

Note 1) In the case of body ported type, the valve is without bracket.
Note 2) Flow characteristics of base mounted type are the values measured in the normally closed and normally open state.

\triangle Cautions

Fefer to pages 5-11-2 to 6 for

- Refer to Best Pneumatics Vol. 4 regarding exchange of passage.
Safety Instruction and Solenoid

Valve Precautions.

Construction

Standard

Body ported

Base mounted

Base mounted

Component Parts

No.	Description	Material	Note
(1)	Body	Aluminium die-casted	Platinum silver
(2)	Adapter plate	Aluminium die-casted	Platinum silver
(3)	End plate	Aluminium die-casted	Platinum silver
(4)	Retainer	Brass	
(5)	Spool valve	Aluminum/NBR	
(6)	Piston	Resin	
(7)	Spring	Stainless steel	
(8)	Sub-plate	Aluminium die-casted	Platinum silver

Replacement Parts

Series	Sub-plate	Hexagon socket head bolt	Gasket for sub-plate
VPA344	VP300-2-1P (Rc 1/8)	M $3 \times 0.5 \times 32$	VP300-17-1
	VP300-2-2P (Rc 1/4)	VP300-24-4	
VPA544	VP500-2-1P (Rc 1/4)	M4 x 0.7×41	VP500-17-1
	VP500-2-2P (Rc 3/8)	VP500-24-3	
VPA744	VP700-2-1P (Rc 3/8)	M5 $\times 0.8 \times 50$	VP700-17-1
	VP700-2-2P (Rc 1/2)	VP700-24-1	

Caution

Tightening Torque for Mounting Screw
M3: $0.6 \mathrm{~N} \cdot \mathrm{~m}$
M4: $1.4 \mathrm{~N} \cdot \mathrm{~m}$
M5: 2.9 N.m

How to Order Sub-plate

Dimensions

Body ported: VPA342- \square_{B}^{A}

Body ported: VPA342V- \square_{B}^{A}

Dimensions

Base mounted: VPA344V- \square_{B}^{A}

Dimensions

Body ported: VPA542- $\square \square_{B}^{A}$

Body ported: VPA542V- \square_{B}^{A}

Dimensions

Dimensions

Body ported: VPA742- \square B

2-R 3.2

Body ported: VPA742V- \square_{B}^{A}

Dimensions

Base mounted: VPA744- $\square \square_{B}^{A}$

Base mounted: VPA744V- \square_{B}^{A}

Series VPA300/500/700

Manifold Specifications

How to Order

* To order valves and blank plate assembly mounted onto the manifold, list valves and blanking plate assembly with manifold base part number.
Example) 4 stations manifold

```
VV3PA3-41-041-02......................... 1
*VPA344-A................................... }
*VP300-25-1A (Blanking plate)....... 1
\longrightarrow \text { To order valves and options mounted onto the manifold at the factory,} list the valve/option with an asterisk (*) in front of each part number.
```

Specifications

Manifold base type	B mount (Single base)
Exhaust type	Common exhaust, Individual exhaust
Supply (P) port type	Common supply port
Max. valve stations	20 stations

Note) If there are more than 10 stations, supply air to P port on both sides of the manifold and exhaust from R port on both sides of the manifold.

Model

Series	Manifold base model	R port model	Port size	Applicable valve model
VPA300	VV3PA3-41-n 1-02	Common	Rc $1 / 4$	VPA344
	VV3PA3-42-n 3-02	Individual	Rc $1 / 4$	
VPA500	VV3PA5-41-n 1-03	Common	Rc 3/8	VPA544
	VV3PA5-42-n 3-03	Individual	Rc 3/8	
VPA700	VV3PA7-41-n 1-04	Common	Rc $1 / 2$	VPA744
	VV3PA7-42-n 3-04	Individual	Rc $1 / 2$	

Option

Description	Part no.	Applicable manifold base model
Blanking plate assembly	VP300-25-1A	VV3PA3
	VP500-25-1A	VV3PA5
	VP700-25-1A	VV3PA7

Series VPA300/500/700

Dimensions

Common exhaust: VV3PA3-41-Station 1-02

Individual exhaust: VV3PA3-42-Station 3-02

\mathbf{L}	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Formula
$\mathbf{\mathbf { L } _ { 1 }}$	83.5	$\mathbf{1 1}$	138.5	166	193.5	221	248.5	276	303.5	$\mathrm{~L}_{1}=27.5 \times n+28.5$
\mathbf{L}_{2}	68.5	96	123.5	151	178.5	206	233.5	261	288.5	$\mathrm{~L}_{2}=27.5 \times n+13.5$

Dimensions

Common exhaust: VV3PA5-41-Station 1-03

Individual exhaust: VV3PA5-42-Station]3-03

\mathbf{L}^{n}	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Formula
\mathbf{L}_{1}	95	128	161	194	227	260	293	326	359	$\mathrm{~L}_{1}=33 \times \mathrm{n}+29$
\mathbf{L}_{2}	80	113	146	179	212	245	278	311	344	$\mathrm{~L}_{2}=33 \times \mathrm{n}+14$

Dimensions

Common exhaust: VV3PA7-41-Station 1-04

Individual exhaust: VV3PA7-42-Station 3-04

\mathbf{L}	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Formula
\mathbf{L}_{1}	115	156	197	238	279	320	361	402	443	$\mathrm{~L}_{1}=41 \times \mathrm{n}+33$
\mathbf{L}_{2}	99	140	181	222	263	304	345	386	427	$\mathrm{~L}_{2}=41 \times \mathrm{n}+17$

