Rotary Actuator: Free Mount Type Vane Style Series CRBU2
 Size: 10, 15, 20, 30, 40

Rotary Actuator: Free Mount Type Vane Style

Series CRBU2
Size: 10, 15, 20, 30, 40

How to Order

Applicable Auto Switch/Refer to page 11-1-1 for further information on auto switches.

Applicable size	Type	Electrical entry		Wiring (Output)	Load voltage			Auto switch model	Lead wire type	Lead wire length (m) *				Applicable load	
					DC		AC			$\begin{gathered} \hline 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{Z}) \end{gathered}$	None (N)		
For 10 and 15	Reed switch	Grommet	No	2-wire	24 V	$\begin{array}{\|c} \hline 5 \mathrm{~V}, 12 \mathrm{~V} \\ \hline 5 \mathrm{~V}, 12 \mathrm{~V}, \\ 100 \mathrm{~V}, \\ \hline \end{array}$	$5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$	90	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	IC circuit	Relay, PLC
							$\begin{aligned} & \begin{array}{l} 5 \mathrm{~V}, 12 \mathrm{~V} \\ 24 \mathrm{~V}, 100 \end{array} \\ & \hline \end{aligned}$	90A	Heavy-duty cord	\bigcirc	\bigcirc	\bigcirc	-		
			Yes			-	-	97	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	-	
	Solid state switch						100 V	93A	Heavy-duty cord	\bigcirc	\bigcirc	\bigcirc	-		
						-	-	T99		\bigcirc	\bigcirc	-	-		
								T99V		\bigcirc	\bigcirc	-	-		
				3-wire (NPN) 3-wire (PNP)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S99		\bigcirc	\bigcirc	-	-	IC circuit	
								S99V		-	\bigcirc	-	-		
								S9P		\bigcirc	\bigcirc	-	-		
								S9PV		-	\bigcirc	-	-		
For 20, 30, and 40	Reed switch	Grommet	Yes	2-wire	24 V	-	100 V	R73	Heavy-duty cord	-	\bigcirc	-	-	-	Relay, PLC
		Connector						R73C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		Grommet	No			$\begin{aligned} & 48 \mathrm{~V}, \\ & 100 \mathrm{~V} \end{aligned}$	$\begin{gathered} 24 \mathrm{~V}, 48 \mathrm{~V}, \\ 100 \mathrm{~V} \\ \hline \end{gathered}$	R80		-	\bigcirc	-	-	IC circuit	
		Connector						R80C		-	\bigcirc	\bigcirc	\bigcirc		
	Solid state switch	Grommet	Yes			-	-	T79		\bigcirc	\bigcirc	-	-	-	
		Connector						T79C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		Grommet		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S79		-	\bigcirc	-	-	IC circuit	
				3-wire (PNP)				S7P		-	\bigcirc	-	-		

* Lead wire length symbols:
$\begin{array}{rccc}0.5 \mathrm{~m} & \ldots & \text { Nil } & \text { (Example) R73C } \\ 3 \mathrm{~m} & \ldots \ldots & \mathrm{~L} & \text { (Example) R73CL } \\ 5 \mathrm{~m} & \ldots \ldots & \text { Z } & \text { (Example) R73CZ } \\ \text { None } & \text { R.... } & \mathrm{N} & \text { (Example) R73CN }\end{array}$

Single Vane Specifications

Model (Size)	CRBU2W10-7	CRBU2W15-■S	CRBU2W20-■S	CRBU2W30-■	CRBU2W40-■S
Rotating angle	$90^{\circ}, 180^{\circ}, 270^{\circ}$				
Fluid	Air (Non-lube)				
Proof pressure (MPa)	1.05			1.5	
Ambient and fluid temperature	5 to $60^{\circ} \mathrm{C}$				
Max. operating pressure (MPa)	0.7			1.0	
Min. operating pressure (MPa)	0.2	0.15			
Speed regulation range ($\left.\mathrm{sec} / 90^{\circ}\right)^{(1)}$	0.03 to 0.3			0.04 to 0.3	0.07 to 0.5
Allowable kinetic energy ${ }^{(2)}$	0.00015	0.001	0.003	0.02	0.04
(J)		0.00025	0.0004	0.015	0.033
Shaft Allowable radial load (N)	15		25	30	60
load Allowable thrust load (N)	10		20	25	40

Bearing typ

Port location	Side ported or Axial ported		
Shaft type	Double shaft (Double shaft with single flat on both shafts)	(Long shathe eshath Singef flat)	
Ang			

Note 3) Adjustment range in the table is for 270°. For 90° and 180°, refer to page 11-3-5.
Double Vane Specifications

Model (Size)	CRBU2W10-■	CRBU2W15-7D	CRBU2W20-םD	CRBU2W30-7	CRBU2W40-7
Rotating angle	$90^{\circ}, 100^{\circ}$				
Fluid	Air (Non-lube)				
Proof pressure (MPa)	1.05			1.5	
Ambient and fluid temperature	5 to $60^{\circ} \mathrm{C}$				
Max. operating pressure (MPa)	0.7			1.0	
Min. operating pressure (MPa)	0.2	0.15			
Speed regulation range ($\left.\mathrm{sec} / 90^{\circ}\right)^{(1)}$	0.03 to 0.3			0.04 to 0.3	0.07 to 0.5
Allowable kinetic energy (J)	0.0003	0.0012	0.0033	0.02	0.04
Shaft Allowable radial load (N)	15		25	30	60
load Allowable thrust load (N)	10		20	25	40
Bearing type	Bearing				
Port location	Side ported or Axial ported				
Shaft type	Double shaft (Double shaft with single flat on both shafts)				
Angle adjustable ${ }^{(3)}$	0 to 90°				0 to 230°

.) Note 1) Make sure to operate within the speed regulation range. Exceeding the maximum speeds can cause the unit to stick or not operate.
Note 2) The upper numbers in this section in the table indicate the energy factor when the rubber bumper is used (at the end of the rotation), and the lower numbers indicate the energy factor when the rubber bumper is not used.
Note 3) Adjustment range in the table is for 100°. For 90°, refer to page 11-3-5.

Inner Volume and Connection Port

4 Caution

Fe sure to read before handling. Refer I I to pages 11-13-3 to 4 for Safety I I Instructions and Common Precautions I Ion the products mentioned in this I I catalog, and refer to pages 11-1-4 to 6 I I for Precautions on every series. JIS Symbol

Series CRBU2

Rotary Actuator: Replaceable Shaft
A shaft can be replaced with a different shaft type except standard shaft type (W).

Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
C	8	9	10	13	15
D	14	18	20	22	30

Note 1) Only side ports are available except for basic type.
Note 2) Dimensions and tolerance of the shaft and single flat (a parallel keyway for size 40) are the same as the standard.

Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
C	8	9	10	13	15
D	14	18	20	22	30

Note 1) Only side ports are available except basic type.
Note 2) Dimensions and tolerance of the shaft and single flat (a parallel keyway for size 40) are the same as the standard.

Copper-free

Use the standard vane type rotary actuators in all series to prevent any adverse effects to color CRTs due to copper ions or fluororesin.

Specifications

Vane type	Single/Double vane				
Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
Operating pressure range (MPa)	0.2 to 0.7	0.15 to 0.7	0.15 to 1.0		
Speed regulation range $\left(\mathrm{s} / 90^{\circ}\right)$	Side ported or Axial ported				
Port location	Sountable				
Shaft type	Double shaft (Shaft with single flat on both shafts)	 Single flat			
Auto switch					

. Precautions

FBe sure to read before handling. Refer to pages 11-13-3 I It to 4 for Safety Instructions and Common Precautions I I on the products mentioned in this catalog, and refer to I I pages 11-1-4 to 6 for Precautions on every series.

Angle Adjuster

\triangle Caution

1. Since the maximum angle of the rotation adjustment range will be limited by the rotation of the rotary actuator itself, make sure to take this into consideration when ordering.

Rotating angle of the rotary actuator	Rotating angle adjustment range
$270^{\circ+4}$	0 to $230^{\circ}(\text { Size: } 10,40)^{*}$
	0 to $240^{\circ}($ Size: $15,20,30)$
$180^{\circ+4}$	0 to 175°
$90^{\circ+4}$	0 to 85°

* The maximum adjustment angle of the angle adjuster for size 10 and 40 is 230°.

2. Connection ports are side ports only.
3. The allowable kinetic energy is the same as the specifications of the rotary actuator by itself (i.e., without angle adjuster).
4. Use a 100° rotary actuator if you desire to adjust the angle to 90° using a double vane type.

Series CRBU2

Effective Output

Chamfered Position and Rotation Range: Top View from Long Shaft Side

Chamfered positions shown below illustrate the conditions of the actuators when B port is pressurized.

2

* For size 40 actuators, a parallel keyway will be used instead of chamfer.

Note) For single vane style, rotation tolerance of $90^{\circ}, 180^{\circ}$, and 270° actuators ${ }_{0}^{+5}$ will be for size 10 actuators only. For double vane style, rotation tolerance of 90° actuators ${ }_{0}^{+5^{\circ}}$ will be for size 10 actuators only.

Construction: 10, 15, 20, 30, 40

Single vane type

Standard: CRBU2W10/15/20/30/40- \square S (3 female threads (one of them is indicated with "**") spaced equally apart in 120° are not available for size 10 .)

With auto switch unit CDRBU2W10/15- $\square_{\mathrm{D}}^{\mathrm{S}}$

CDRBU2W20/30/40- \square_{D}^{S}
CDRBU2W40-S/D

Component Parts

No.	Description	Material
(1)	Cover (A)	Resin
(2)	Cover (B)	Resin
(3)	Magnet lever	Resin
(4)	Holding block (A)	Aluminum alloy
(5)	Holding block (B)	Aluminum alloy
(6)	Holding block	Aluminum alloy
(7)	Switch block (A)	Resin
(8)	Switch block (B)	Resin
(9)	Switch block	Resin
(10)	Magnet	Magnetic body
(11)	Arm	Stainless steel
(12)	Hexagon socket head set screw	Stainless steel
(13)	Round head Phillips screw	Stainless steel
(14)	Round head Phillips screw	Stainless steel
(15)	Round head Phillips screw	Stainless steel
(16)	Round head Phillips screw	Stainless steel
(17)	Rubber cap	NBR (size 40 only)

* For CDRBU2W10, two round head Phillips screws (13), are required.

Series CRBU2

Construction: 10, 15, 20, 30, 40

Double vane type

Standard: CRBU2W10-■D

For 90°
(Top view from long shaft side)

Standard: CRBU2W15/20/30/40- \square D

For 90°
(Top view from long shaft side)

(Long shaft side)

For 100°
(Top view from long shaft side)

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	
(2)	Body (B)	Aluminum alloy	
(3)	Vane shaft	Carbon steel	
(4)	Stopper	Stainless steel	
(5)	Stopper	Resin	
(6)	Stopper	Stainless steel	
(7)	Bearing	High carbon chrome bearing steel	
(8)	Back-up ring	Stainless steel	
(9)	Cover	Aluminum alloy	
(10)	Plate	Resin	
(11)	Hexagon socket head cap screw	Stainless steel	Special screw
(12)	O-ring	NBR	
(13)	Stopper seal	NBR	
(14)	Gasket	NBR	
(15)	O-ring	NBR	
(16)	O-ring	NBR	

For 100°
(Top view from long shaft side)

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	
(2)	Body (B)	Aluminum alloy	
(3)	Vane shaft	Carbon steel	
(4)	Stopper	Stainless steel	
(5)	Stopper	Resin	
(6)	Stopper	Stainless steel	
(7)	Bearing	High carbon chrome bearing steel	
(8)	Back-up ring	Stainless steel	
(9)	Hexagon socket head cap screw	Stainless steel	Special screw
$(10$	O-ring	NBR	
(11)	Stopper seal	NBR	

Dimensions: 10, 15, 20, 30
Single vane type \bullet Following illustrations show actuators for 90° and 180° when B port is pressurized.

CRBU2W \square - \square S
<Port location: Side ported>

CRBU2W $\square-\square$ SE
<Port location: Axial ported>

CRBU2W10■- \square SE
<Port location: Axial ported>

Model	A	B	C	D	E (g6)	F (h9)	G	H	J	K	L	M	N	P	Q1	(Depth) Q2	R	S1	S2	T	U	V	W	X
$\begin{aligned} & \text { CRBU2W10- } \square \text { S } \\ & \hline \text { CRBU2W10- } \square \text { SE } \\ & \hline \end{aligned}$	29	22	8	14	$4_{-0.012}^{-0.004}$	$9_{-0.036}^{0}$	1	15.5	5	9	0.5	$\begin{array}{\|c} 10.5 \\ \hline 8.5 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 10.5 \\ \hline 9.5 \\ \hline \end{array}$	24	-	$\begin{array}{\|c\|} \hline \text { M3 } \\ (4) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { M5 } \times 0.8 \\ \hline \text { M } \times 0.5 \\ \hline \end{array}$	3.5	M3 x 0.5	17	3	25	31	41
CRBU2W15- \square S CRBU2W15- \square SE	34	25	9	18	$5_{-0.012}^{-0.004}$	$12{ }_{-0.043}^{0}$	1.5	15.5	6	10	0.5	$\begin{array}{\|l\|} \hline 10.5 \\ \hline 11 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10.5 \\ \hline 10 \\ \hline \end{array}$	29	M3 x 0.5	-	$\begin{array}{\|l\|} \hline \text { M5 } \times 0.8 \\ \hline \text { M3 } \times 0.5 \\ \hline \end{array}$	3.5	M3 x 0.5	21	3	29	36	48
CRBU2W20- \square S	42	34.5	10	20	$6_{-0.012}^{-0.04}$	$14{ }_{-0.043}^{0}$	1.5	17	7	10	0.5	$\begin{array}{\|l\|} \hline 11.5 \\ \hline 14 \\ \hline \end{array}$	$\frac{11}{13}$	36	M4 x 0.7	-	M5 x 0.8	4.5	M4 x 0.7	26	4	36	44	59
CRBU2W30- \square S	50	47.5	13	22	$8_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	2	17.5	8	12	1		$\frac{13}{14}$	43	M5 x 0.8	-	M5 x 0.8	5.5	M5 x 0.8	29	4.5	42	52	69

Series CRBU2

Dimensions: 10, 15, 20, 30
Double vane type \bullet llustrations below show the intermediate rotation position when A or B port is pressurized.

CRBU2W10-■D

<Port location: Side ported>

CRBU2W15/20/30-DD
<Port location: Side ported>(lllustrations below show size 30 actuators.)

CRBU2W15/20/30-■DE <Port location: Axial ported>

Model	A	B	C	D	E(g6)	F(h9)	G	H	J	K	L	M	N	P	Q1	R	S1	S2	T	U	V	W	X
CRBU2W15-DD	34	25	9	18	$5_{-0.012}^{-0.004}$	$12{ }_{-0.043}^{0}$	1.5	15.5	6	10	0.5	10.510 .5		29	M3 x 0.5	M5 0.8	3.5	M3 x 0.5	21	3	29	36	48
CRBU2W15- \square DE													10			M3 $\times 0.5$							
CRBU2W20-DD	42	34.5	10	20	$6_{-0.012}^{-0.004}$	$14{ }_{-0.043}^{0}$	1.5	17	7	10	0.5	11.5	11	36	M4 x 0.7	M5 x 0.8	4.5	M4 x 0.7	26	4	36	44	59
CRBU2W20- \square DE													13										
CRBU2W30-DD	50	47.5	13	22	$8_{-0.014}^{-0.005}$	$16_{-0.043}^{-0.00}$	217.5		8	12	1		13	43	M5 x 0.8	M5 x 0.8	5.5	M5 x 0.8	29	4.5	42	52	69
CRBU2W30-DDE									15.5														

Dimensions: 40

Single vane type/Double vane type

CRBU2W40-■S/D

<Port location: Side ported>

D-

20-

CRBU2W40-■SE/DE

<Port location: Axial ported>

Series CRBU2

Dimensions: 10, 15, 20, 30 (With auto switch unit)
Single vane type Following illustrations show actuators for 90° and 180° when B port is pressurized.
CDRBU2W10/15- \square S
CDRBU2W20/30-■S

*1. The length is 24 when any of the following auto switches are used: D-90, D-90A, D-S99(V), D-T99 and D-S9P(V).
The length is 30 when any of the following auto switches are used: D-97 and D-93A
*2. The angle is 60° when any of the following auto switches are used: D-90, D-90A, D-97 and D-93A.
The angle is 69° when any of the following auto switches are used: D-S99(V), D-T99(V) and D-S9P(V).

For rotary actuators with auto switch unit connection ports are side ports only.

- The above exterior view drawings illustrate rotary actuators with one right-hand and one left-hand

(mm)																					
Model	A	B	C	D	E(g6)	$F(\mathrm{~h} 9)$	G	H	K	L	M	N	R	S1	S2	T	\mathbf{U}	V	W	X	Y
CDRBU2W10- \square S	29	22	29	14	$4_{-0.012}^{-0.004}$	$9_{-0.036}^{0}$	1	15.5	9	0.5	10.5	10.5	M5 x 0.8	3.5	M3 x 0.5	17	3	25	31	41	18.5
CDRBU2W15-■S	34	25	29	18	$5_{-0.012}^{-0.004}$	$12_{-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M5 x 0.8	3.5	M3 x 0.5	21	3	29	36	48	18.5
CDRBU2W20- \square	42	34.5	30	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M5 x 0.8	4.5	$\mathrm{M} 4 \times 0.7$	26	4	36	44	59	25
CDRBU2W30- \square	50	47.5	31	22	$8{ }_{-0.014}^{-0.005}$	$16-0.043$	2	17.5	12	1	12	13	M5 x 0.8	5.5	M5 x 0.8	29	4.5	42	52	69	25

Double vane type - Illustrations below show the intermediate rotation position when A or B port is pressurized.

CDRBU2W10- \square D

CDRBU2W15/20/30-■D
(Illustrations below show size 20 actuators.)

(Approx. 26.5 for connector type) CDRBU2W20/30-■D

* 1. The length is 24 when any of the following auto switches are used: D-90, D-90A, D-S99(V), D-T99 and D-S9P(V).

The length is 30 when any of the following auto switches are used: D-97 and D-93A.

* 2. The angle is 60° when any of the following auto switches are used: D-90, D-90A, D-97 and D-93A.

The angle is 69° when any of the following auto switches are used: D-S99(V), D-T99(V) and D-S9P(V).

* 3. The length (Dimension S) is 25.5 when any of the following grommet type auto switches are used: D-R73, D-R80, D-S79, D-T79, and D-S7P.

The length (Dimension S) is 34.5 when any of the following connector type auto switches are used: D-R73, D-R80, and D-T79.

Model	A	B	C	D	E (g6)	F (h9)	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y		Z
CDRBU2W15- \square D	34	25	29	18	$5_{-0.012}^{-0.004}$	$12_{-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M5 x 0.8	3.5	M3 x 0.5	21	3	29	36	48	18.5	$24 *$	$30{ }^{* 1}$
CDRBU2W20- \square D	42	34.5	30	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M5 x 0.8	4.5	M4 x 0.7	26	4	36	44	59	25	25.5	$34.5{ }^{* 3}$
CDRBU2W30-■D	50	47.5	31	22	$8_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	2	17.5	12	1	12	13	M5 x 0.8	5.5	M5 x 0.8	29	4.5	42	52	69	25		

Series CRBU2

Dimensions: 40 (With auto switch unit)

Single vane type/Double vane type

CDRBU2W40-■S/D

Rotary Actuator with Angle Adjuster Free Mount Type, Vane Style Series CRBU2WU
 Size: 10, 15, 20, 30, 40

How to Order

Construction: 10, 15, 20, 30, 40

Single vane type/Double vane style
With angle adjuster
CRBU2W10/15/20/30/40- $\square_{\text {D }}^{\text {S }}$

Single vane

Double vane

Component Parts

No.	Description	Material	Note
(1)	Stopper ring	Aluminum die-casted	
(2)	Stopper lever	Carbon steel	Zinc chromated
(3)	Lever retainer	Carbon steel	Zinc chromated
(4)	Rubber bumper	NBR	Zinc chromated
(5)	Stopper block	Carbon steel	
(6)	Block retainer	Carbon steel	Special screw
(7)	Cap	Resin	Special screw
(8)	Hexagon socket head cap screw	Stainless steel	Special screw
(9)	Hexagon socket head cap screw	Stainless steel	
(10)	Hexagon socket head cap screw	Stainless steel	
(11)	Joint	Aluminum alloy	Note)
(12)	Hexagon socket head set screw	Stainless steel	Hexagon nut will be used for CDRBU2W10 only.
	Hexagon nut	Stainless steel	
(13)	Round head Phillips screw	Stainless steel	Note)
(14)	Magnet lever	-	Note)

\square Note) These items (no. 11, 13, and 14) consist of auto switch unit and angle adjuster. Refer to page 11-4-20 to 11-4-27 for detailed specifications. Stainless steel is used for size 10 only.

With angle adjuster + Auto switch unit CDRBU2WU10/15- $\square_{\mathrm{D}}^{\mathrm{S}} \quad$ CDRBU2WU20/30/40- $\square_{\mathrm{D}}^{\mathrm{S}}$

CRB2
CRBU2

- For single vane type:

Illustrations above show actuators for 90° and 180° when B port is pressurized.

- For double vane type:

Illustrations above show the intermediate rotation position when A or B port is pressurized.

\triangle Precautions

「Be sure to read before handling. Refer to pages 11-13-3 Ito 4 for Safety Instructions and Common Precautions I I on the products mentioned in this catalog, and refer to I I pages 11-1-4 to 6 for Precautions on every series.

Angle Adjuster

© Caution

1. Since the maximum angle of the rotation adjustment range will be limited by the rotation of the rotary actuator itself, make sure to take this into consideration when ordering.

Rotating angle of the rotary actuator	Rotating angle adjustment range
$270^{\circ+4}{ }_{0}^{4}$	0 to $230^{\circ}(\text { Size: } 10,40)^{*}$
	0 to $240^{\circ}($ Size: $15,20,30)$
$180^{\circ+4}{ }_{0}^{\circ}$	0 to 175°
$90^{\circ+4}$	0 to 85°

* The maximum adjustment angle of the angle adjuster for size 10 and 40 is 230°.

2. Connection ports are side ports only.
3. The allowable kinetic energy is the same as the specifications of the rotary actuator by itself.
4. Use a 100° rotary actuator if you desire to adjust the angle to 90° using a double vane type.

Series CRBU2WU

Dimensions: 10, 15, 20, 30 (With angle adjuster)

Double vane type
CRBU2WU10-■D

CRBU2WU15/20/30-DD
Illustrations below show size 20 actuators.

* Illustrations above show the intermediate rotation position when A or B port is pressurized.

(mm)																					
Model	A	B	C	D	E(g6)	F(h9)	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y
CRBU2WU15-■D	34	25	21.2	18	$5_{-0.0024}^{-0.004}$	$12{ }_{-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M5 $\times 0.8$	3.5	M3 $\times 0.5$	21	3	29	36	48	3.2
CRBU2WU20-■D	42	34.5	25	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M 5×0.8	4.5	M4 $\times 0.7$	26	4	36	44	59	4
CRBU2WU30-■D	50	47.5	29	22	$8_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	2	17.5	12	1	12	13	M5 $\times 0.8$	5.5	M5 x 0.8	29	4.5	42	52	69	4.5

Dimensions: 40 (With angle adjuster)
Single vane type/Double vane type
CRBU2WU40- - S/D

Series CRBU2WU

Dimensions: 10, 15, 20, 30 (With angle adjuster and auto switch unit)

Single vane type
CDRBU2WU10/15- \square S

CDRBU2WU20/30-■S

		(mm)		
Model	B	C	D	R
CDRBU2WU10- $\square \mathbf{S}$	22	45.5	14	$\mathrm{M} 5 \times 0.8$
CDRBU2WU15-	25	47	18	$\mathrm{M} 5 \times 0.8$
CDRBU2WU20- $\square \mathbf{S}$	34.5	51	20	$\mathrm{M} 5 \times 0.8$
CDRBU2WU30- $\square \mathbf{S}$	47.5	55.5	22	$\mathrm{M} 5 \times 0.8$

Double vane type

CDRBU2WU10/15-■D

(mm)				
Model	B	C	D	R
CDRBU2WU10-7D	31	45.5	14	M5 x 0.8
CDRBU2WU15--D	25	47	18	M5 $\times 0.8$
CDRBU2WU20-DD	34.5	51	20	M5 x 0.8
CDRBU2WU30-DD	47.5	55.5	22	M5 x 0.8

2

* Following illustrations show actuators for 90° and 180° when A port is pressrized. Note) • For rotary actuators with angle adjuster and auto switch unit, connection ports are side ports only.
- The above exterior view drawings illustrate the rotary actuator equipped with one right-hand and one left-hand switches.
CDRBU2WU20/30-■D

* Illustrations above show the intermediate rotation position when A or B port is pressurized.
Note) • For rotary actuators with angle adjuster and auto switch unit, connection ports are side ports only.
- The above exterior view drawings illustrate the rotary actuator equipped with one right-hand and one left-hand switches.

Dimensions: 40 (With angle adjuster and auto switch unit)

Single vane type/Double vane type

 CDRBU2WU40-■S/D

Series CRBU2 (Size: 10, 15, 20, 30, 40) Simple Specials:
-XA1 to -XA24: Shaft Pattern Sequencing I

Shaft shape pattern is dealt with simple made-to-order system.
 Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing I

Applicable shaft type: W (Standard)

Shaft Pattern Sequencing Symbol

Axial: Top (Long shaft side)

Symbol	Description	Applicable size				
		10	15	20	30	40
XA1	Shaft-end female thread		\bigcirc	\bigcirc	\bigcirc	
XA3	Shaft-end male thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA5	Stepped round shaft	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA7	Stepped round shaft with male thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA9	Modified length of standard chamfer	-	\bigcirc	-	\bigcirc	
XA11	Two-sided chamfer	\bigcirc			\bigcirc	
XA14*	Shaft through-hole + Shaft-end female thread		\bigcirc	\bigcirc	\bullet	\bigcirc
XA17	Shortened shaft	-	\bigcirc	-	\bigcirc	
XA21	Stepped round shaft with double-sided chamfer	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA23	Right-angle chamfer	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA24	Double key					\bigcirc

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

Axial: Bottom (Short shaft side)

Symbol	Description		Applicable size			
		$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA2 ${ }^{*}$	Shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA4 *	Shaft-end male thread	\bullet	\bullet	\bullet	\bullet	\bullet
XA6 *	Stepped round shaft	\bullet	\bullet	\bullet	\bullet	\bullet
XA8 *	Stepped round shaft with male thread	\bullet	\bullet	\bullet	\bullet	\bullet
XA10 *	Modified length of standard chamfer	\bullet	\bullet	\bullet	\bullet	\bullet
XA12 *	Two-sided chamfer	\bullet	\bullet	\bullet	\bullet	\bullet
XA15 *	Shaft through-hole + Shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA18* *	Shortened shaft	\bullet	\bullet	\bullet	\bullet	\bullet
XA22 *	Stepped round shaft with double-sided chamfer	\bullet	\bullet	\bullet	\bullet	\bullet

Double Shaft

Symbol	Description	Applicable size				
		$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA13 *	Shaft through-hole		\bullet	\bullet	\bullet	\bullet
XA16 *	Shaft through-hole + Double shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA19 *	Shortened shaft	\bullet	\bullet		\bullet	
XA20 *	Reversed shaft	\bullet	\bullet		\bullet	\bullet

Combination
XA \square Combination

A combination of up to two $X A \square$ s are available.
Example: -XA1 A24

$\mathrm{XA} \square, \mathrm{XC} \square$ Combination

Combination other than -XA \square, such as Made to Order (-XC \square), is also available.
Refer to pages 11-3-31 to 11-3-32 for details of made-to-order specifications.

Symbol	Description	Applicable size	Combination
			XA1 to XA24
XC1 *	Change connection port location	10, 15, 20, 30, 40	\bigcirc
XC2 *	Change threaded holes to through-holes	15, 20, 30, 40	-
XC3 *	Change the screw position	Size: 10, 15, 20, 30, 40	-
XC4	Change rotation range		-
XC5	Change rotation range between 0 to 200°		\bigcirc
XC6	Change rotation range between 0 to 110°		\bigcirc
XC7*	Reversed shaft		-
XC30	Fluorine grease		\bigcirc

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

A total of four XA \square and $\mathrm{XC} \square$ combinations is available.
Example: -XA1A24C1C30
-XA2C1C4C30

Axial: Top (Long shaft side)

Symbol: A1 The long shaft can be further shortened by machining emale threads into it.
(If shortening the shaft is not required, indicate " $*$ " for dimension X .)

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A3 The long shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W

Symbol: A5 The long shaft can be further shortened by machining it into a stepped round shaft
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Symbol: A7 The long shaft can be further shortened by machining it into a stepped round shaft with male threads.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

	(mm)		
Size	X	L1 max	Q1
$\mathbf{1 0}$	5.5 to 14	$\mathrm{X}-\mathbf{1}$	M 3
$\mathbf{1 5}$	7.5 to 18	$\mathrm{X}-\mathbf{1 . 5}$	$\mathrm{M} 3, \mathrm{M} 4$
$\mathbf{2 0}$	9 to 20	$\mathrm{X}-1.5$	$\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5$
$\mathbf{3 0}$	11 to 22	$\mathrm{X}-\mathbf{2}$	$\mathrm{M} 3, \mathrm{M} 4$, $\mathrm{M} 5, \mathrm{M} 6$

Axial: Bottom (Short shaft side)

Symbol: A2 The long shaft can be further shortened by machining emale threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Not available for size 10.
- The maximum dimension L2 is, as a rule, twice the thread size
(Example) For M3: L2 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A4 \quad The short shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W

					(mm)
		Size	Y	L2 max	Q2
		10	7 to 8	Y - 3	M4
		15	8.5 to 9	$Y-3.5$	M5
		20	10	Y - 4	M6
		30	13	Y - 5	M8
		40	15	Y - 6	M10

Symbol: A6 The short shaft can be further shortened by machining it into a stepped round shaft
(If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

	(mm)	
Size	Y	L2 max
$\mathbf{1 0}$	$\mathbf{2}$ to $\mathbf{8}$	$\mathrm{Y}-\mathbf{1}$
$\mathbf{1 5}$	3 to 9	$\mathrm{Y}-\mathbf{1 . 5}$
$\mathbf{2 0}$	3 to 10	$\mathrm{Y}-1.5$
$\mathbf{3 0}$	3 to 13	$\mathrm{Y}-2$
$\mathbf{4 0}$	6 to 15	$\mathrm{Y}-\mathbf{4 . 5}$

Symbol: A8 The short shaft can be further shortened by machining it into a stepped round shaft with male threads.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(lf not specifying dimension C 2 , indicate "*" instead.)

Axial: Top (Long shaft side)

Symbol: A9 The long shaft can be further shortened by changing the ength of the standard chamfer on the long shaft side.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W

	(mm)	
Size	X	L1
$\mathbf{1 0}$	3 to 14	$9-(14-X)$ to $(X-1)$
$\mathbf{1 5}$	5.5 to 18	$10-(18-X)$ to $(X-1.5)$
$\mathbf{2 0}$	7 to 20	$10-(20-X)$ to $(X-1.5)$
$\mathbf{3 0}$	7 to 22	$10-(22-X)$ to $(X-1.5)$

Symbol: A11 The long shaft can be further shortened by machining a double-sided chamfer onto it.
(If altering the standard chamfer and shortening the shaft are not required, indicate " $*$ " for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more.
- Applicable shaft type: W

	(mm)		
Size	X	L1	L3 max
$\mathbf{1 0}$	3 to 14	$9-(14-X)$ to $(X-1)$	$X-1$
$\mathbf{1 5}$	3 to 18	$10-(18-X)$ to $(X-1.5)$	$X-1.5$
$\mathbf{2 0}$	3 to 20	$10-(20-X)$ to $(X-1.5)$	$X-1.5$
$\mathbf{3 0}$	5 to $\mathbf{2 2}$	$12-(22-X)$ to $(X-2)$	$X-2$

Symbol: A14

Applicable to single vane type only
A special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- Not available for size 10
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) for M3: L1 max. $=6 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A17

Shorten the long shaft.

- Applicable shaft type: W

Axial: Bottom (Short shaft side)

Symbol: A10 The short shaft can be further shortened by changing the length of the standard chamfer.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W

(mm)		
Size	Y	L2
10	3 to 8	5-(8-Y) to (Y - 1)
15	3 to 9	6-(9-Y) to (Y-1.5)
20	3 to 10	$7-(10-Y)$ to $(Y-1.5)$
30	5 to 13	$8-(13-Y)$ to $(Y-2)$
40	7 to 15	9-(15-Y) to (Y-4.5)

Symbol: A12 The short shaft can be further shortened by machining a
(If altering the standard chamfer and shortening the shaft are not required,
indicate "*" for both the L 2 and Y dimensions.

- Since L2 is a standard chamfer, dimension E2 is 0.5 mm or more, and 1 mm
or more with shaft bore sizes of $\varnothing 30$ or $\varnothing 40$.
- Applicable shaft type: W

Size	\mathbf{Y}	$\mathbf{L 2}$	L2 max
$\mathbf{1 0}$	3 to 8	$5-(8-Y)$ to $(Y-1)$	$Y-1$
$\mathbf{1 5}$	3 to 9	$6-(9-Y)$ to $(Y-1.5)$	$Y-1.5$
$\mathbf{2 0}$	3 to 10	$7-(10-Y)$ to $(Y-1.5)$	$Y-1.5$
$\mathbf{3 0}$	5 to 13	$8-(13-Y)$ to $(Y-2)$	$Y-2$
$\mathbf{4 0}$	7 to 15	$9-(15-Y)$ to $(Y-4.5)$	$Y-4.5$

Symbol: A15

Applicable to single vane type only
A special end is machined onto the short shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter-

- Not available for size 10
- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) for M4: L2 max. $=8 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A18

Shorten the short shaft.

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)
Size	\mathbf{Y}
$\mathbf{1 0}$	$\mathbf{1}$ to 8
$\mathbf{1 5}$	1.5 to 9
$\mathbf{2 0}$	1.5 to 10
$\mathbf{3 0}$	2 to 13
$\mathbf{4 0}$	4.5 to 15

Axial: Top (Long shaft side)

Symbol: A21 The long shaft can be further shortened by machining it into a stepped round shaft with a double-sided chamfer.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Axial: Bottom (Short shaft side)

Symbol: A22 The short shaft can be further shortened by machining it into a stepped round shaft with a double-sided chamfer.
(If shortening the shaft is not required, indicate "*" for dimension Y.)
Applicable shaft type: W

- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

(mm)				
Size	X	L2 max	L4	D2
10	4 to 8	Y -2.5	L2+1.5	ø3
15	4.5 to 9	Y - 3	L2+1.5	ø3 to ø4
20	5to 10	$\mathrm{Y}-3.5$	L2+2	ø3 to ø5
30	7 to 13	$\mathrm{Y}-5$	L2+3	ø3 to ø6
40	8 to 15	$\mathrm{Y}-5.5$	L2+3	ø3 to ø6

Double Shaft

Symbol: A13

Applicable to single vane type only
Shaft with through-hole

- Not available for size 10.
- Minimum machining diameter for d 1 is 0.1 mm .
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

Size	d1
$\mathbf{1 5}$	$\varnothing 2.5$
$\mathbf{2 0}$	$\varnothing 2.5$ to $\varnothing 3.5$
$\mathbf{3 0}$	$\varnothing 2.5$ to $\varnothing 4$
$\mathbf{4 0}$	$\varnothing 2.5$ to $\varnothing 3$

Symbol: A19

Both the long shaft and short shaft are shortened.

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

Size	\mathbf{X}	\mathbf{Y}
$\mathbf{1 0}$	$\mathbf{1}$ to 14	$\mathbf{1}$ to 8
$\mathbf{1 5}$	1.5 to 18	1.5 to 9
$\mathbf{2 0}$	1.5 to 20	1.5 to 10
$\mathbf{3 0}$	2 to 22	2 to 13

Symbol: A23 angle double-sided be further sho

(If altering the standard chamfer and shortening the shaft are not required, indicate "*" for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more, and 1 mm or more with a shaft bore sizes of $\varnothing 30$ or $\varnothing 40$.
- Applicable shaft type: W

Symbol: A16

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10 .
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) for M5: L1 max $=10 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

$\underline{\mathrm{Q}}=\mathrm{ML}_{\text {[---1 }}^{\text {- }}$	$\mathrm{M} \text { Size }$	15	20	30	40
	M3 x 0.5	ø2.5	ø2.5	ø2.5	ø2.5
Q1速	M4 x 0.7	-	ø3.3	ø3.3	-
	M5 x 0.8	-	-	$\varnothing 4.2$	-

Symbol: A20

The rotation axis is reversed.
(The long shaft and short shaft are shortened.)

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)	
Size	\mathbf{X}	\mathbf{Y}
$\mathbf{1 0}$	1 to 3	1 to 12
$\mathbf{1 5}$	1.5 to 6.5	1.5 to 15.5
$\mathbf{2 0}$	1.5 to 7.5	1.5 to 17
$\mathbf{3 0}$	2 to 8.5	2 to 19
$\mathbf{4 0}$	3 to 9	-

Symbol: A24

Double key
Keys and keyways are machined at 180° from the standard position.

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

	(mm)	
Size	Keyway dimensions	LL
40	$4 \times 4 \times 20$	2

Shaft Pattern Sequencing II

-XA31 to XA47
Applicable shaft type: J, K, S, T, Y

- Axial: Top (Long shaft side)

Symbol	Description	Shaft type	Applicable size				
			$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA31	Shaft-end female thread	S, Y		\bullet	\bullet	\bullet	
XA33	Shaft-end female thread	J, K, T		\bullet	\bullet	\bullet	\bullet
XA37	Stepped round shaft	J, K, T	\bullet	\bullet	\bullet	\bullet	\bullet
XA45	Middle-cut chamfer	J, K, T	\bullet	\bullet		\bullet	\bullet
XA47	Machined keyway	J, K, T			\bullet	\bullet	

Axial: Bottom (Short shaft side)

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA32 *	Shaft-end female thread	S, Y		\bigcirc	\bigcirc	\bigcirc	
XA34 *	Shaft-end female thread	J, K, T		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA38 *	Stepped round shaft	K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA46 *	Middle-cut chamfer	K	\bigcirc	\bigcirc	-	-	\bigcirc

Double Shaft

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA39 *	Shaft through-hole	S, Y		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA40 *	Shaft through-hole	K, T		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA41 *	Shaft through-hole	J		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA42 *	Shaft through-hole + Shatt-end female thread	S, Y		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA43 *	Shaft through-hole + Shaft-end female thread	K, T		\bigcirc	-	-	\bigcirc
XA44 *	Shatt through-hole + Shatt-end female thread	J		\bigcirc	-	-	\bigcirc

* These specifications are not available for rotary actuators with

Combination

XA \square Combination

Symbol	Combination					
XA31	XA31					
XA32	SY	XA32				
XA33	-	JKT	XA33			
XA34	-	-	JKT	XA34		
XA37	-	-	-	JKT	XA37	
XA38	-	-	K	-	K	XA38

[^0]
XA $\square, \mathrm{XC} \square$ Combination

Combination other than -XA \square, such as Made to Order (-XCD), is also available. Refer to pages 11-3-31 to 11-3-32 for details of made-to-order specifications.

Symbol	Description	Applicable size	$\begin{array}{\|l\|} \hline \text { Combination } \\ \hline \text { XA31 to XA47 } \\ \hline \end{array}$
XC1	Change connection port location	10, 15, 20, 30, 40	\bigcirc
XC2	Change threaded hole to through-hole	15, 20, 30, 40	\bigcirc
XC3	Change the screw position		\bigcirc
XC4	Change rotation range		\bigcirc
XC5	Change rotation range between 0 to 200°	10, 15, 20, 30, 40	\bigcirc
XC6	Change rotation range between 0 to 110°		\bigcirc
XC7	Reversed shaft		-
XC30	Fluorine grease		\bigcirc

[^1] auto switch unit and angle adjuster. A total of four XA \square and XC \square combinations is available. Example: -XA33 A34C27C3C

Series CRBU2

Axial: Top (Long shaft side)

Symbol: A31

Machine female threads into the long shaft.

- The maximum dimension L 1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: S, Y

Symbol: A33

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: J, K, T

Symbol: A37
The long shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft types: J, K, T
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Size	X	L1 max	D1
$\mathbf{1 0}$	2 to 14	$\mathrm{X}-1$	$\varnothing 3$ to $\varnothing 3.9$
$\mathbf{1 5}$	3 to 18	$\mathrm{X}-1.5$	$\varnothing 3$ to $\varnothing 4.9$
$\mathbf{2 0}$	3 to 20	$\mathrm{X}-1.5$	$\varnothing 3$ to $\varnothing 5.9$
$\mathbf{3 0}$	3 to 22	$\mathrm{X}-2$	$\varnothing 3$ to $\varnothing 7.9$
$\mathbf{4 0}$	4 to 30	$\mathrm{X}-3$	$\varnothing 3$ to $\varnothing 9.9$

Symbol: A45
The long shaft can be further shortened by machining a middle-cut chamfer into it. (The position of the chamfer is same as the standard one.) (If shortening the shaft is not required, indicate "*" for dimension X .)

- Applicable shaft types: J, K, T

$\begin{aligned} & \substack{\text { shant } \\ \text { Size }} \end{aligned}$	X	W1	L1 max	L3 max
	$J\|K\| T$	J K T	J K T	J K T
10	6.5 to 14	0.5 to 2	X-3	L1-1
15	8 to 18	0.5 to 2.5	X-4	L1-1
20	9 to 20	0.5 to 3	X-4.5	L1-1
30	11.5 to 22	0.5 to 4	X-5	L1-2
40	15.5 to 30	0.5 to 5	X-5.5	L1-2

Axial: Bottom (Short shaft side)

Symbol: A32

- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 $=8 \mathrm{~mm}$
However, for M5 with S shaft, the maximum dimension L2 is 1.5 times
the thread size.
- Applicable shaft types: S, Y

	(mm)	
	Q2	
	S	Y
10	Not available	
15	M3	
20	M3, M4	
30	M3, M4, M5	

Symbol: A34

Machine female threads into the short shaft

- The maximum dimension L 2 is, as a rule, twice the thread size.
(Example) For M3: L2 $=6 \mathrm{~mm}$
However, for M5 with T shaft, the maximum dimension L2 is 1.5 times
the thread size.
- Applicable shaft types: J, K, T

(mm)			
Size	Q2		
	J	K	T
10	Not available		
15	M3		
20	M3, M4		
30	M3, M4, M5		
40	M3, M4, M5		

Symbol: A38 The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: K
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

Size	Y	L2 max	D2
10	2 to 14	Y - 1	ø3 to ø3.9
15	3 to 18	Y - 1.5	ø3 to ø4.9
20	3 to 20	Y-1.5	ø3 to ø5.9
30	6 to 22	Y -2	ø3 to $\varnothing 7.9$
40	6 to 30	Y-4.5	ø5 to ø9.9

Symbol: A46 $\begin{aligned} & \text { The short shaft can be further shortened by machining a } \\ & \text { middle-cut chamfer into it }\end{aligned}$ middle-cut chamfer into it.
(The position of the chamfer is same as the standard one.) (If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: K

Size	Y	W2	L2 max	L4 max
10	4.5 to 14	0.5 to 2	Y-1	L2-1
15	5.5 to 18	0.5 to 2.5	Y - 1.5	L2-1
20	6 to 20	0.5 to 3	Y - 1.5	L2-1
30	8.5 to 22	0.5 to 4	$\mathrm{Y}-2$	L2-2
40	13.5 to 30	0.5 to 5	Y -4.5	L2-2

Axial: Top (Long shaft side)

Symbol: A47 Machine a keyway into the long shaft. (The position of the keyway is the same as the standard one.) The key must be ordered separately.

- Applicable shaft types: J, K, T

Size	$\mathbf{a 1}$	$\mathbf{L 1}$	\mathbf{N}
$\mathbf{2 0}$	$2 h 99_{-0.025}^{0}$	10	6.8
$\mathbf{3 0}$	$3 h 99_{-0.025}^{0}$	14	9.2

Double Shaft

Symbol: A39

Applicable to single vane type only
Shaft with through-hole (Additional machining of S, Y shaft)

- Applicable shaft types: S, Y
- Equal dimensions are indicated by - A parallel keyway
the same marker. shaft for size 40 .
- Not available for size 10.
- Minimum machining diameter for d1 is 0.1 mm .

Y axis

Symbol: A41

Applicable to single vane type only
Shaft with through-hole

- Not available for size 10.
- Applicable shaft type: J.
- Equal dimensions are indicated by the same marker.
(mm)

Size	d1
$\mathbf{1 5}$	$\varnothing 2.5$
$\mathbf{2 0}$	$\varnothing 2.5$ to $\varnothing 3.5$
$\mathbf{3 0}$	$\varnothing 2.5$ to $\varnothing 4$
$\mathbf{4 0}$	$\varnothing 2.5$ to $\varnothing 4.5$

Symbol: A43

A special end is machined onto both the long and short shafts, and a through-hole is A silled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum L1 dimension is, in principle,
twice the thread size.
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
However, for M5 on the short shaft of T shaft:

Symbol: A40

Applicable to single vane type only
Shaft with through-hole (Additional machining of K, T shaft)

- Applicable shaft types: K, T
- Equal dimensions are indicated
by the same marker.
- Not available for size 10.

$$
\mathrm{d} 3=\varnothing \quad-\quad \text {, }
$$

$$
\xrightarrow{\mathrm{d} 3=\varnothing}
$$

Symbol: A42

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shatts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum dimension L1 is,
as a rule, twice the thread size,
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
However, for M5 on the short shaft of S shaft: L1 $=7.5 \mathrm{~mm}$

- $\mathrm{d} 1=\varnothing 2.5, \mathrm{~L} 1=18($ max $)$
machining diameter for d1 is 0.1 mm
- $\mathrm{d} 11=\mathrm{d} 3$ for sizes 20 to 40

Size ${ }^{\text {tre }}$	K T	K	T
	d1	d3	
15	$\varnothing 2.5$	$\varnothing 2.5$ to ø3	
20	-	$\varnothing 2.5$ to ø4	
30	-	ø2.5 to $\varnothing 4.5$	
40	-	$\varnothing 2.5$ to ø5	

- A parallel keywa

Applicable shaft types: S, Y

- Equal dimensions are indicated by the same marker.

				mm)
	15	20	30	40
	S Y	S Y	S Y	S
M3 x 0.5	ø2.5	ø2.5	$ø 2.5$	ø2.
M4 x 0.7	-	$ø 3.3$	ø3.3	-
M5 x 0.8	-	-	$\varnothing 4.2$	-

Symbol: A44
Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum dimension L 1 is,
as a rule, twice the thread size
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
Applicable shaft type: J
-Equal dimensions are indicated by the same marker.

Size Thread	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
M3 $\mathbf{x} \mathbf{0 . 5}$	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
M4 x 0.7	-	$\varnothing 3.3$	$\varnothing 3.3$	$\varnothing 3.3$
M5 $\mathbf{x} \mathbf{0 . 8}$	-	-	$\varnothing 4.2$	$\varnothing 4.2$

Series CRBU2 (Size: 10, 15, 20, 30, 40)
Made to Order Specifications:
-XC1, 2, 3, 4, 5, 6, 7, 30

Made to Order Symbol

| Symbol | Description | | Applicable shaft type |
| :---: | :--- | :---: | :---: | Applicable

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

$\text { Symbol: C1 } \quad \begin{aligned} & \text { Add connecting ports on Body (A). } \\ & \text { (An additionally machined port will have an aluminum } \end{aligned}$				
- Parallel keyway is used on the long shaft for size 40. - This specification is not available for the rotary actuator with auto switch unit.				
dy (B) \quad (mm)				
-	Size	Q	M	N
	10	M3	8.5	9.5
,	15	M3	11	10
	20	M5	14	13
$\xrightarrow{+\infty}$	30	M5	15.5	14
	40	M5	21	20

Combination

Symbol	Combination						
XC1	XC1						
XC2	\bigcirc	XC2					
XC3	\bigcirc	-	XC3				
XC4	\bigcirc	\bigcirc	\bigcirc	XC4			
XC5	\bigcirc	\bigcirc	\bigcirc	-	XC5		
XC6	\bigcirc	\bigcirc	\bigcirc	-	-	XC6	
XC7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	XC7
XC30	\bigcirc						

Symbol: C2	Change 2 threaded holes on Body (B) into through holes (An additionally machined port will have an aluminum surface since it will be left unfinished.)		
$\rightarrow{ }^{\oplus}$		(mm)	
(1)	(1)	Size	d
4	()	10	3.4
\oplus	$\oplus \oplus$	15	3.4
		20	4.5
A port B port	A port B port	30	5.5
(Standard)	(Altered)	40	5.5

Symbol: C3 Change the position of the screws for tightening the actuator

- Not available for size 10.

Symbol: C5

Applicable to single vane style only
Start of rotation is 45° up from the bottom of the vertical line to the left side.

- Rotation tolerance for CRBU2W10 is ${ }^{+50^{\circ}}$.
- A parallel keyway is used instead of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when B port is pressurized.

Symbol: C7

The shafts are reversed.

- A parallel keyway is used instead of chamfer for size 40.

		(mm)
Size	\mathbf{Y}	\mathbf{X}
$\mathbf{1 0}$	19	3
$\mathbf{1 5}$	20.5	6.5
$\mathbf{2 0}$	22.5	7.5
$\mathbf{3 0}$	26.5	8.5
$\mathbf{4 0}$	36	9

Symbol: C4

Rotation starts from the horizontal line $\left(90^{\circ}\right.$ down from the top to the right side)

- Rotation tolerance for CRBU2W10 is ${ }^{+5}$
- A parallel keyway is used instead ${ }_{0}^{+5^{\circ}}$ of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when A port is pressurized.

Symbol: C6

Applicable to single vane style only
Start of rotation is 45° up from the bottom of the vertical line to the left side.

- Rotation tolerance for CRBU2W10 is ${ }^{+5}$
- A parallel keyway is used instead of chamfer for size 40

Start of rotation is the position of the chamfer (keyway) when B port is pressurized.

Symbol: C30

Change the standard grease to fluoro grease (Not for low-speed specifications.)

D-

20-

[^0]: A combination of up to two $X A \square$ s are available.
 Example: -XA31 A32

[^1]: * These specifications are not available for rotary actuators with

