Process Gas Diaphragm Valve

AZ Series

Cleaned for high purity semiconductor applications. (RoHS)

AP

SL

ΑZ

AK

BP

Cleanroom assembled and He leaked tested.

Valve meets dimensional requirements of

SEMI F36-0299, Option I.

Air Operated Type Series AZ3542 and 4542

- Compact and lightweight by making the actuator shorter
- M5 actuation port

Tech

Manually Operated T Series AZ3652 and 4652

Compact and lightweight by modifying the knob design

The knob is a unique design that combines a scalloped round knob with a raised rectangular section to provide two choices of gripping.

Actuation is 90 degrees open to closed with a cutout window, on both sides of raised rectangular section, providing visual status of open or closed state.

Direction of a raised rectangular section indicate open/close status

Air operated type AZ3542/AZ4542 Series

Manually operated type AZ3652/AZ4652 Series

Body material

316L SS

Electropolish and passivation internals

SEMI standard

Mounting hole, dimension, and face to face dimension are interchangeable (Guide for Dimensions and Connections of Gas Distribution Components).

User-friendly forged body

Rounded corner for safety and easy operation (forged body is for machined type.)

Port

Machined type

Welded type

Multiple port available in various configurations

	Mach	nined	Welded			
Body						
Connection	Face seal fitting (Male)	Tube weld (Tube stub)	Face seal fitting (Male)	Face seal fitting (Female)	Tube weld (Tube stub)	
Connection size (inch)	1/4, 3/8	1/4, 3/8, 1/2		1/4, 3/8		
Interchangeability	N	0	Yes			

Welded type, inlet and outlet available with any combination of fitting type and size.

Further information>>> How to order P.804, 806

Example)

Face seal fitting (Male) 1/4

Inlet Face seal fitting (Female) 3/8 Welded type, ports (2, 3, 4 ports) and porting configuration (flow direction 2, 3, 4) selectable

Further information>>> Optional porting configuration P.808

■ Air operated type

	Series Status	Body material	Max. operating	Cv * 1)	Connections	Page	
	Series	Status	Body material	pressure (MPa)	CV "	Fitting	rage
	AZ3542	N.C.	316L SS	0.9	0.29	Face seal fitting	P.804
Machined type Welded type	AZ4542	N.C.	3102 33	0.9	0.5	Tube weld	P.004

■ Manually operated type

	Series	Knob	Body material	Max. operating	Cv * 1)	Connections	D
	Series	KIIOD	body material	pressure (MPa)	CV · ·/	Fitting	Page
	AZ3652	Knob with a raised	316L SS	4.7	0.29	Face seal fitting	P.806
Machined type Welded type	AZ4652	section on top (indication window)		1.7	0.5	Tube weld	F.000

^{* 1)} Cv calculation based on SEMI Standard

Precautions for selection -

The proper regulator and valve selection can be significantly affected by parameters such as system design, flow duration, frequency of use, ambient conditions and outlet pressure. It is important to understand that one may follow this guide's recommendation, yet have a failure due to a parameter specific to the given application, as noted.

Applicable Fluid

Process Gas	Molecular Formula
Boron11 Trifluoride	11BF3
Argon	Ar
Arsine	AsH ₃
Boron Trichloride	BCl ₃
Boron Trifluoride	BF ₃
Halocarbon114	C ₂ CIF ₄
Halocarbon115	C ₂ CIF ₅
Halocarbon116	C ₂ F ₆
Acetylene	C ₂ H ₂
Halocarbon134A	C ₂ H ₂ F ₄
Ethylene	C ₂ H ₄
Halocarbon125	C ₂ HF ₅
Dimethylsilane	C ₂ SiH ₈
HalocarbonR218	C ₃ F ₈
Propene	СзНе
Propane	C ₃ H ₈
Perfluoro-butadiene	C ₄ F ₆
HalocarbonC318	C ₄ F ₈
Butene-1	C ₄ H ₈
Octafluorocyclopentene	C ₅ F ₈
Halocarbon12B2	CBr ₂ F ₂
Halocarbon13B1	CBrF ₃
Halocarbon12	CCl ₂ F ₂
Halocarbon13	CCIF ₃
Halocarbon14	CF ₄
Halocarbon32	CH ₂ F ₂
Trimethylsilane	(CH ₃) ₃ SiH
Methyl Chloride	CH₃CI
Methyl Fluoride	CH₃F
Methanol	CH₃OH
Methylsilane	CH₃SiH₃
Methane	CH ₄
Halocarbon21	CHCl₂F
Halocarbon23	CHF3

Process Gas	Molecular Formula
Chlorine	Cl2
Chlorine Trifluoride	CIF ₃
Carbon Monoxide	СО
Carbon Dioxide	CO ₂
Germane	GeH ₄
Hydrogen	H ₂
Hydrogen Sulfide	H ₂ S
Hydrogen Selenide	H ₂ Se
Hydrogen Bromide	HBr
Hydrogen Chloride	HCI
Helium	He
Hydrogen Fluoride	HF
Krypton	Kr
Nitrogen	N ₂
Nitrogen Oxide	N ₂ O
Neon	Ne
Nitrogen Trifluoride	NF ₃
Ammonia	NH ₃
Nitric Oxide	NO
Oxygen	O ₂
Phosphorous Pentafluoride	PF ₅
Phosphine	PH₃
Sulfer Tetrafluoride	SF ₄
Sulfer Hexafluoride	SF ₆
Disilane	Si ₂ H ₆
Silicon Tetrachloride	SiCl ₄
Silicon Tetrafluoride	SiF ₄
Dichlorosilane	SiH ₂ Cl ₂
Silane	SiH ₄
Trichlorosilane	SiHCl ₃
Sulfur Dioxide	SO ₂
Diethyltelluride	Te (C ₂ H ₅) ₂
Tungsten Hexafluoride	WF ₆
Xenon	Xe

[·] This applicable fluid is a reference guide and does not apply to product guarantee.

⚠ Caution

Since the product specified here is used under various operating conditions, its compatibility with fluid and specific equipment must be decided by the person who designs the equipment or decided its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product regardless of any recommendation.

Proper installation, operation and maintenance are also required to assure safe, trouble free performance.

AP

 $[\]cdot$ Please consult SMC for a specific recommendation beyond the scope of this document.

Diaphragm Valve for Ultra High Purity

Air operated type

AZ3542 & 4542 Series

- Suitable for UHP gas supply line
- Body material: 316L SS
- Pneumatically actuated normally closed

How to Order

RoHS

Specifications

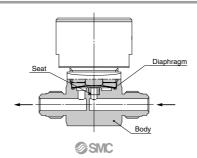
	· B	.=		
Operating Parameters		AZ3542 AZ4542		
Status		Normally cl	osed (N.C.)	
Gas		Select compatible materials	s of construction for the gas	
Operating p	ressure	Vacuum to 125	psig (0.9 MPa)	
Proof press	ure	1.5 times the maximu	m operating pressure	
Burst press	ure	3 times the maximur	n operating pressure	
Ambient and	operating temperature	-10 to 71°C	(No freezing)	
Cv		0.29	0.5	
Leak rate Inboard leakage		2 x 10-11 Pa·m3/s		
Leak rate	Outboard leakage	2 x 10 ⁻¹⁰ Pa·m ³ /s *1)		
Across the	seat leak	1 x 10 ⁻¹⁰ Pa·m ³ /s		
Surface fini	sh	Ra 10μin. (0.25 μm)		
Connection	S	Face seal, Tube weld		
Actuation p	ressure	60 to 110 psig (0.4 to 0.76 MPa)		
Actuation p	ort connection	M5 x 0.8		
Actuation port location		Тор		
Installation		Bottom mount		
Internal volume		0.06 in ³ (1.07 cm ³)		
Weight		0.24 kg *2)		
		405 · (0 0 MD)		

Welded

Wetted Parts Material

O: Inlet and outlet available with any combination of fitting type and size.

* 1) Fixed fitting (no rotating nut)

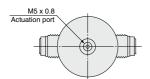

Wetted Parts	S
Body	316L SS
Surface finish	Electropolish + Passivation
Diaphragm	Ni-Co Alloy
Seat	PCTFE (Option: Polyimide)

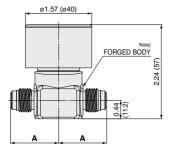
2PW

Optional portings and porting

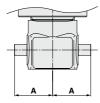
configurations available. Please refer to page 808.

Construction

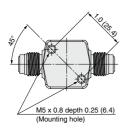

^{* 1)} Tested with Helium gas inlet pressure 125 psig (0.9 MPa).


^{* 2)} Weight for AZ3542S2PMV4MV4 including individual boxed weight. It may vary depending on connections or options.

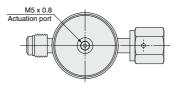
Dimensions inch (mm)

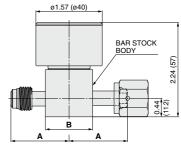

AZ3542 & 4542

Ports: 2P (Machined)

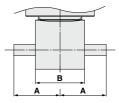


Connections: MV□

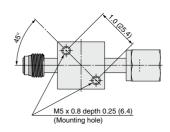

Connections: TW□



Note) MV6 is bar stock body.


Ports	Connections	Α	
FUILS	Connections	inch	(mm)
2P (Machined)	MV4	1.14	(29.0)
	TW4	0.875	(22.2)
	MV6	1.5	(38.1)
	TW6	0.875	(22.2)
	TW8	1.125	(28.6)

Ports: 2PW (Welded)



Connections: MV□, FV□

Connections: TW□

Ports	Connections		Α		3
Foits	Connections	inch	(mm)	inch	(mm)
	MV4	1.39	(35.3)		
2PW (Welded)	FV4	1.39			
	TW4	1.06	(26.9)	1.12 sq.	(00.4)
	MV6	1.93	(49.0)	11.12 Sq.	(20.4)
	FV6	1.93	(49.0)		
	TW6	1.325	(33.7)		

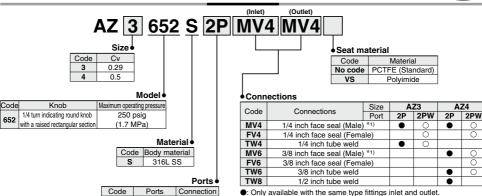
AP

SL

BP

Diaphragm Valve for Ultra High Purity

Manually operated type


AZ3652 & 4652 Series

- Suitable for UHP gas supply line
- Body material: 316L SS

How to Order

RoHS

Optional portings and porting configurations available.
Please refer to page 808.

2 ports

Machined

Welded

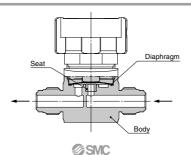
2P

2PW

Wetted Parts Material

O: Inlet and outlet available with any combination of fitting type and size.

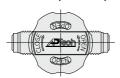
* 1) Fixed fitting (no rotating nut)

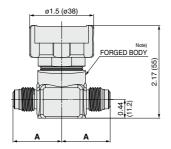

Wetted Parts	S
Body	316L SS
Surface finish	Electropolish + Passivation
Diaphragm	Ni-Co Alloy
Seat	PCTFE (Option: Polyimide)

Specifications

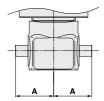
Operati	ing Parameters	AZ3652	AZ4652	
Gas		Select compatible materials of construction for the ga		
Operating p	ressure	Vacuum to 250 psig (1.7 MPa)		
Proof press	ure	1.5 times the maximu	m operating pressure	
Burst press	ure	3 times the maximur	n operating pressure	
Ambient and	operating temperature	-40 to 71 °C	(No freezing)	
Cv		0.29	0.5	
Leak rate	Inboard leakage	2 x 10 ⁻¹¹ Pa·m ³ /s		
Leak Tale	Outboard leakage	2 x 10-10 Pa·m3/s *1)		
Across the	seat leak	1 x 10 ⁻¹⁰	Pa·m³/s	
Surface fini	sh	Ra 10 μin	.(0.25 μm)	
Connection	S	Face seal,	Tube weld	
Installation		Bottom mount		
Internal volume		0.06 in ³ (1.07 cm ³)		
Weight		0.22 kg *2)		
Knob		1/4 turn indicating round knob with a raised rectangular sect		

- * 1) Tested with Helium gas inlet pressure 250 psig (1.7 MPa).
- * 2) Weight for AZ3652S2PMV4MV4 including individual boxed weight. It may vary depending on connections.

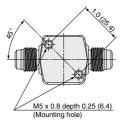

Construction



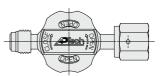
Diaphragm Valve for Ultra High Purity Manually operated type AZ3652 & 4652 Series


Dimensions AZ3652 & 4652

Ports: 2P (Machined)

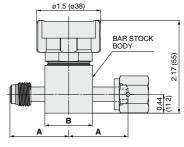


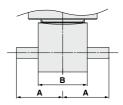
Connections: MV□


Connections: TW□

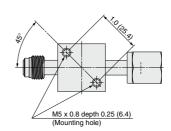
Note) MV6 is bar stock body.

Ports	Connections	Α		
FOIIS	Connections	inch	(mm)	
2P (Machined)	MV4	1.14	(29.0)	
	TW4	0.875	(22.2)	
	MV6	1.5	(38.1)	
	TW6	0.875	(22.2)	
	TW8	1.125	(28.6)	


Ports: 2PW (Welded)


inch (mm)

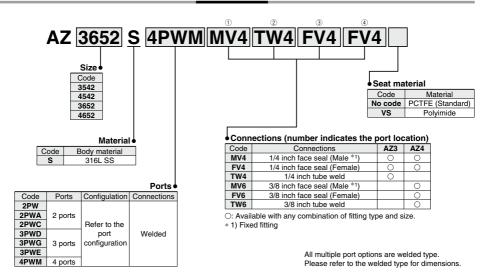
AP SL ΑZ AK


BP

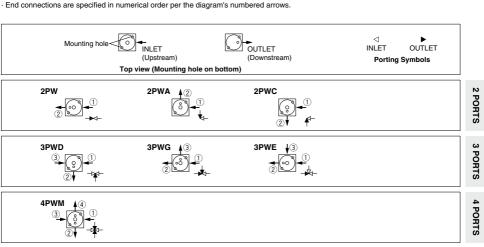
Connections: MV□, FV□

Connections: TW□

Ports	Connections	Α		В	
		inch	(mm)	inch	(mm)
2PW (Welded)	MV4	1.39	(35.3)	1.12 sq.	(28.4)
	FV4				
	TW4	1.06	(26.9)		
	MV6	1.93	(49.0)		
	FV6				
	TW6	1.325	(33.7)		



Optional knob color available. Red, blue, green, gold, silver, purple, etc. Please contact SMC for further information.


AZ Series / Diaphragm Valve **Optional Porting Configuration**

How to Order

Port Configuration

- · Valves are illustrated top view looking down through the valve.
- · Inlet (Upstream) is defined as a port connected to the region below the valve seat. It is illustrated with an arrow pointing towards the valve body or an "empty" triangle on the schematic. Outlet (Downstream) is defined as a port connected to the region above the seat and below the diaphragm. It is illustrated with an arrow pointing away from the valve body or a "filled" triangle on the schematic.
- · The traditional flow direction is INLET to OUTLET, but AP Tech valves may be employed in either flow direction.

Process Gas Equipment / Diaphragm Valve Specific Product Precautions

Be sure to read this before handling the products.

Refer to back page 50 for Safety Instructions and pages 633 and 634 for Process Gas Equipment Precautions.

Selection

1. Confirm the specifications.

This product is used in gas delivery systems to shutoff gas flow. When selecting the product, confirm the operating conditions, such as type of gas, operating pressure (inlet and outlet), flow rate, actuating pressure, operating temperature etc., and use within the operating range specified in the catalog. The product may not be suitable for use with specific gases and applications/environments. Check the compatibility of the product materials with the process gas.

Design the equipment and select the product by understanding the characteristics of gas.

Mounting

∧ Warning

- Confirm the mounting direction of the product.
 Inlet ports are labeled with an "IN" mark. The outlet ports are usually not labeled but may be labeled with an "OUT" mark. Orient the valve as specified by the system designer.
- Connect actuation pressure to the valve actuator connection. (Air operated type)
 Use nitrogen or clean dry air for actuation pressure. The connection M5 thread.
- After installation, check internal leakage (leakage across seat) with inert gases.
 Perform a helium leak test depending on applications.

Maintenance

⚠ Warning

 If a valve requires repair, contact SMC or sales representative.

Operation (Air operate type)

⚠ Warning

- Use nitrogen or clean dry air as actuation pressure.
- 2. Confirm the valve type (N.C.).

In the case of N.C. (Normally Closed), valve will open when applying actuation pressure to the valve actuator connection and valve will close when actuation pressure is vented to atmospheric pressure.

Apply actuation pressure within the range of specifications.

Operation (Manually operated type)

 When closing the valve, rotate the handle clockwise until it completely stops.

There is the internal stop in the handle or in the valve body. Rotate the handle clockwise until the internal stop is reached and it completely stops.

When opening the valve, rotate the handle counterclockwise until it completely stops.

There is the internal stop in the handle. Rotate the handle counterclockwise until the internal stop is reached and it completely stops.

3. Do not use a tool when rotating the handle.

When the handle is rotated with a tool, it may apply excessive torque to the handle or inside the valve body and it may cause damage. Rotate the handle by hand.

AP

SL AZ

AK BP