Direct Operated 3 Port Solenoid Valve

VX31/32/33 Series

For Air, Water, Oil, Steam

Solenoid valves for various fluids used in a wide variety of applications

Improved corrosion resistance
Special magnetic material adopted

Enclosure: Equivalent to IP65

Low-noise construction
Special construction enables to reduce the metal noise. (DC specification)

Reduced power consumption
(DC specification)
VX31: $6 \mathrm{w} \rightarrow 4.5 \mathrm{w}$
VX32: $8 \mathrm{w} \rightarrow 7 \mathrm{w}$
VX33: $11.5 w \rightarrow 10.5 w$

Flame resistance UL94V-0 conformed Flame resistant mold coil material

Improved
maintenance performance
Maintenance is performed easily due to the threaded assembly.

Direct Operated 3 Port Solenoid Valve VX31/32/33 Series

For Air, Water, Oil, Steam

VX31/32/33 Series
 Common Specifications

Standard Specifications

Valve specifications	Valve construction		Direct operated poppet
	Withstand pressure (MPa)		3.0
	Body material		Brass (C37), Stainless steel
	Seal material		NBR, FKM, EPDM, PTFE, FFKM
	Enclosure		Dusttight, Low jetproof (equivalent to IP65)*
	Environment		Location without corrosive or explosive gases
Coil specifications	Rated voltage	AC (Class B coil, Built-in full-wave rectifier type) AC (Class H coil)	$100 \mathrm{VAC}, 200 \mathrm{VAC}, 110 \mathrm{VAC}, 220 \mathrm{VAC}, 230 \mathrm{VAC}, 240 \mathrm{VAC}, 48 \mathrm{VAC}$
		DC	24 VDC, 12 VDC
	Allowable voltage fluctuation		$\pm 10 \%$ of rated voltage
	Allowable leakage voltage	AC (Class B coil, Built-in full-wave rectifier type)	$\pm 5 \%$ or less of rated voltage
		AC (Class H coil)	$\pm 20 \%$ or less of rated voltage
		DC	$\pm 2 \%$ or less of rated voltage
	Coil insulation type		Class B, Class H

* Electrical entry, Grommet with surge voltage suppressor (GS) has a rating of IP40.

For enclosure, refer to "Glossary of Terms" on page 403.

Solenoid Coil Specifications

DC Specification

Model	Power consumption (W)	Temperature rise (${ }^{\circ} \mathrm{C}$) Note)
VX31	4.5	45
VX32	7	45
VX33	10.5	60

Note) The values are for an ambient temperature of $20^{\circ} \mathrm{C}$ and at the rated voltage.
AC Specification (Class B coil, Built-in full-wave rectifier type)

Model	Apparent power (VA)*	Temperature rise (${ }^{\circ} \mathrm{C}$) ${ }^{\text {Note) }}$
VX31	7	55
VX32	9.5	60
VX33	12	65

* There is no difference in the frequency and the inrush and energized apparent power, since a rectifying circuit is used in the AC (Class B). Note) The values are for an ambient temperature of $20^{\circ} \mathrm{C}$ and at the rated voltage.
AC Specification (Class H coil)

Model		Apparent power (VA)		Temperature rise (${ }^{\circ} \mathrm{C}$) Note)
	Frequency (Hz)	Inrush	Energized	
VX31	50	33	14	65
	60	28	12	60
VX32	50	65	33	100
	60	55	27	95
$\mathbf{2}$ VX33	50	94	50	120
	60	79	41	115

Note) The values are for an ambient temperature of $20^{\circ} \mathrm{C}$ and at the rated voltage.

Contents

For Air /Single Unit P. 382
For Air /Manifold P. 384
For Water /Single Unit P. 386
For Oil /Single Unit P. 388
For Oil /Manifold P. 390
For Steam /Single Unit P. 392
For Vacuum Pad /Single Unit P. 394
For Vacuum Pad /Manifold P. 396
Construction P. 398
Dimensions /Single Unit P. 399
Dimensions /Manifold P. 400
Replacement Parts P. 401

Direct Operated 3 Port Solenoid Valve

VX31/32/33 Series

Applicable Fluid Check List

All Options (Single Unit)

Fluid and application	Option symbol	Seal material		Body material/ Shading coil material Note 6)	Guide pin material	Coil insulation type Note 4)	Note
		Main valve poppet	Fixed sealant				
Air	Nil	NBR	NBR	Brass (C37)	PPS	B	-
	G			Stainless steel			
Medium vacuum, Non-leak, Oil-free	M ${ }^{\text {Note 1, 2) }}$	FKM	FKM	Stainless steel	PPS	B	
	V Note 1, 2)			Brass (C37)			
Water	Nil	NBR	NBR	Brass (C37)	PPS	B	
	G			Stainless steel			
Heated water	E	EPDM	EPDM	Brass (C37)/Cu	Stainless steel	H	
	P			Stainless steel/Ag			
Oil Note 3)	A	FKM	FKM	Brass (C37)	PPS	B	
	H			Stainless steel			
	D			Brass (C37)/Cu	Stainless steel	H	
	N			Stainless steel/Ag			
Steam (Max. $183{ }^{\circ} \mathrm{C}$)	S	FFKM	PTFE	Brass (C37)/Cu	Stainless steel	H	COM. only
	Q			Stainless steel/Ag			
Copper-free, Fluorine-free ${ }^{\text {Note 5) }}$	J	EPDM	EPDM	Stainless steel	PPS	B	-
	P			Stainless steel/Ag	Stainless steel	H	
Others	B	EPDM	EPDM	Brass (C37)	PPS	B	
	C	FFKM	PTFE		Stainless steel		COM. only
	K Note 1, 2)			Stainless steel			COM. only, Oil-free

All Options (Manifold)*

Fluid and application	Option symbol	Seal material		Body material/ Shading coil material Note 6)	Guide pin material	Coil insulation type Note 4)
		Main valve poppet	Fixed sealant			
Air	Nil	NBR	NBR	Brass (C37)	PPS	B
Medium vacuum, Non-leak, Oil-free	V Note 1, 2)	FKM	FKM	Brass (C37)	PPS	B
Oil ${ }^{\text {Note 3) }}$	A	FKM	FKM	Brass (C37)	PPS	B
	D			Brass (C37)/Cu	Stainless steel	H
Others	B	EPDM	EPDM	Brass (C37)	PPS	B
	E			Brass (C37)/Cu	Stainless steel	H

[^0]Note 1) The leakage amount ($10^{-6} \mathrm{~Pa} \cdot \mathrm{~m}^{3} / \mathrm{s}$) of " V ", " M " options are values when differential pressure is 0.1 MPa .
Note 2) " V ", "M" and "K" options are for oil-free treatment
Note 3) The dynamic viscosity of the fluid must not exceed $50 \mathrm{~mm}^{2} / \mathrm{s}$.
Note 4) Coil insulation type Class H: AC spec. only, Class B/AC spec.: built-in full-wave rectifier type only
Note 5) The nuts (non-welded parts) are nickel plated on the Brass (C37) material.
Note 6) There is no shading coil attached to DC spec. or Class B/AC spec.

VX31/32/33 Series

For Air/Single Unit

(Non-leak, Medium vacuum)

Model / Valve Specifications

Note) Symbols for N.C. and N.O. types
The symbols show that the N.C. type: port 3 and N.O. type: port 1 are in a blocked state (T).
However, use each port pressure in the state shown below.
N.C. type: Pressure at port $1 \geq$ Pressure at port $2 \geq$ Pressure at port 3
N.O. type: Pressure at port $3 \geq$ Pressure at port $2 \geq$ Pressure at port 1

Port size	Orifice diameter (mmø)	Model	Max. operating pressure differential ${ }^{\text {Note } 3)}$ (MPa)			Flow rate characteristics ${ }^{\text {Note 1) }}$			Max. system pressure (MPa)	Note 2) Weight (g)
			N.C.	N.O.	COM.	C[dm ${ }^{3} /(\mathrm{s}$-bar)]	b	Cv		
$\begin{gathered} 1 / 8 \\ (6 A) \end{gathered}$	1.5	VX311■-01	1	1	0.7	0.29	0.32	0.08	2.0	380
	2.2	VX312■-01	0.7	0.5	0.4	0.60	0.25	0.15		
	3	VX313 \square-01	0.3	0.3	0.2	0.82	0.20	0.20		
$\begin{gathered} 1 / 4 \\ (8 \mathrm{~A}) \end{gathered}$	1.5	VX311-02	1	1	0.7	0.29	0.32	0.08		
	2.2	VX312■-02	0.7	0.5	0.4	0.60	0.25	0.15		
		VX322■-02	1.2	1	0.7	0.64	0.40	0.17		530
		VX332■-02	1.6	1.6	1					730
	3	VX313 \square-02	0.3	0.3	0.2	0.82	0.20	0.20		380
		VX323■-02	0.6	0.5	0.3	1.1	0.25	0.27		530
		VX333 -02	1	0.9	0.6					730
	4	VX324■-02	0.3	0.25	0.2	1.6	0.20	0.38		530
		VX334■-02	0.5	0.4	0.3					730
$\begin{gathered} 3 / 8 \\ (10 \mathrm{~A}) \end{gathered}$	2.2	VX322■-03	1.2	1	0.7	0.64	0.40	0.17		530
		VX332■-03	1.6	1.6	1					730
	3	VX323■-03	0.6	0.5	0.3	1.1	0.25	0.27		530
		VX333■-03	1	0.9	0.6					730
	4	VX324■-03	0.3	0.25	0.2	1.6	0.20	0.38		530
		VX334■-03	0.5	0.4	0.3					730

Note 1) The flow rate characteristics of this product have variations.
When the highly precise flow control is required according to the system to be used, select an orifice diameter 1.3 times larger than that shown above and install a restrictor on the downstream side of the solenoid valve to make the adjustment.
Note 2) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.
Also, add 60 g for VX31 $\square \square, 80 \mathrm{~g}$ for $\mathrm{VX} 32 \square \square$ and $\mathrm{VX} 33 \square \square$ respectively for bracket option.
Note 3) Refer to "Glossary of Terms" on page 403, for details on the max. operating pressure differential and the max. system pressure.

Fluid and Ambient Temperature

Power source	Fluid tem	ature (${ }^{\circ} \mathrm{C}$)	Ambient temperature (${ }^{\circ} \mathrm{C}$)
	Solenoid valve option (symbol)		
	Nil, G	V, M	
AC	$-10^{\text {Note) }}$ to 60	$-10^{\text {Note) }}$ to 40	-20 to 60
DC	$-10^{\text {Note) }}$ to 60	$-10^{\text {Note) }}$ to 40	-20 to 40

Note) Dew point temperature: $-10^{\circ} \mathrm{C}$ or less

Valve Leakage Rate

Internal Leakage / External Leakage

Seal material	Max. operating pressure differential	Leakage rate	
		Non-leak, Medium vacuum Note)	
NBR, FKM	From 0 to less than 1 MPa	$1 \mathrm{~cm}^{3} / \mathrm{min}$ or less	$10^{-6} \mathrm{~Pa} \cdot \mathrm{~m}^{3} / \mathrm{sec}$
or less			

Note) The leakage amount ($10^{-6} \mathrm{~Pa} \cdot \mathrm{~m}^{3} / \mathrm{sec}$) for the " V " and " M " option are values when the differential pressure is 0.1 MPa .

Table (1) Model/Orifice Diameter/Port Size

Solenoid valve model				Orifice symbol (Diameter)			
Model	VX31	VX32	VX33	$\begin{gathered} \mathbf{1} \\ (1.5 \mathrm{~mm} \sigma) \end{gathered}$	$\begin{gathered} \mathbf{2} \\ (2.2 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{3} \\ (3 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline 4 \\ (4 \mathrm{~mm}) \end{gathered}$
$\begin{gathered} \text { Port } \\ \text { symbol } \\ \text { (Port size) } \end{gathered}$	01 (1/8)	-	-	-	-	\bigcirc	-
	02 (1/4)	-	-	\bigcirc	-	\bigcirc	-
	-	02 (1/4)	02 (1/4)	-	\bigcirc	\bigcirc	-
	-	03 (3/8)	03 (3/8)	-	-	\bigcirc	\bigcirc

Table (2) Solenoid Valve Option

Option symbol	Seal material		$\begin{array}{\|c\|} \hline \text { Body material/ } \\ \text { Shading coil } \\ \text { material } \end{array}$	Guide pin material	Coil insulation type	Note ${ }^{\text {Note) }}$
	Main valve poppet	Fixed sealant				
Nil	NBR	NBR	Brass (C37)	PPS	B	
G			$\begin{gathered} \hline \text { Stainless } \\ \text { steel } \\ \hline \end{gathered}$			-
M	FKM	FKM	Stainless steel			$\begin{gathered} \text { Non-leak } \\ \left(10^{-6} \mathrm{~Pa} \cdot \mathrm{~m}^{3} / \mathrm{sec}\right), \end{gathered}$
V			Brass (C37)			Medium vacuum (0.1 Pa.abs), Oil-free

[^1]Table (3) Rated Voltage - Electrical Option

Rated voltage			Class B		
			S	L	Z
$\begin{aligned} & \mathrm{AC/} \\ & \mathrm{DC} \end{aligned}$	Voltage symbol	Voltage	With surge voltage suppressor	With light	With light and surge voltage suppressor
AC	1	100 V	- Note)	\bigcirc	- Note)
	2	200 V		-	
	3	110 V		\bigcirc	
	4	220 V		\bigcirc	
	7	240 V		-	
	8	48 V		-	
	J	230 V		-	
DC	5	24 V	-	\bigcirc	\bigcirc
	6	12 V	\bigcirc	-	-

Note 1) Option S, Z are not available as surge voltage suppressor is integrated into the AC/Class B coil, as a standard.

* Class H coil is not available.

VVX31／32／33 Series

For Air／Manifold

（Non－leak，Medium vacuum）

Solenoid Valve for Manifold／Valve Specifications

N．C．

Symbol

N．O．

Symbol

COM．

Symbol

Note）Symbols for N．C．and N．O．types
The symbols show that the N．C．type：port 3 and N．O．type：port 1 are in a blocked state（ T ）．
However，use each port pressure in the state shown below．
N．C．type：Pressure at port $1 \geq$ Pressure at port $2 \geq$ Pressure at port 3
N．O．type：Pressure at port $3 \geq$ Pressure at port $2 \geq$ Pressure at port 1

Orifice diameter （mmø）	Model	Max．operating pressure differential ${ }^{\text {Note 2）}}$（ MPa ）			Flow rate characteristics ${ }^{\text {Note 1）}}$			Max．system pressure （MPa）
		N．C．	N．O．	COM．	C［dm ${ }^{3} /(\mathrm{s} \cdot \mathrm{bar})$ ］	b	Cv	
1.5	VX311口－00	1	1	0.7	0.29	0.32	0.08	2.0
2.2	VX312■－00	0.7	0.5	0.4	0.60	0.25	0.15	
	VX322■－00	1.2	1	0.7	0.64	0.40	0.17	
	VX332■－00	1.6	1.6	1				
3	VX313口－00	0.3	0.3	0.2	0.82	0.20	0.20	
	VX323■－00	0.6	0.5	0.3	1.1	0.25	0.27	
	VX333口－00	1	0.9	0.6				
4	VX324■－00	0.3	0.25	0.2	1.6	0.20	0.38	
	VX334■－00	0.5	0.4	0.3				

Note 1）The flow rate characteristics of this product have variations．
When the highly precise flow control is required according to the system to be used，select an orifice diameter 1.3 times larger than that shown above and install a restrictor on the downstream side of the solenoid valve to make the adjustment．
Note 2）Refer to＂Glossary of Terms＂on page 403 for details on the max．operating pressure differential and the max．system pressure．

Fluid and Ambient Temperature

Power source	Fluid temp	ature（ ${ }^{\circ} \mathrm{C}$ ）	Ambienttemperature$\left({ }^{\circ} \mathrm{C}\right)$
	Solenoid valve option（symbol）		
	Nil	V	
AC	$-10^{\text {Note）}}$ to 60	$-10^{\text {Note）}}$ to 40	－20 to 60
DC	$-10^{\text {Note）}}$ to 60	$-10^{\text {Note）}}$ to 40	－20 to 40

Note）Dew point temperature：$-10^{\circ} \mathrm{C}$ or less

Valve Leakage Rate

Internal Leakage／External Leakage

Seal material	Max．operating pressure differential	Leakage rate	
		Air	Non－leak，Medium vacuum Note）
NBR，FKM	From 0 to less than 1 MPa	$1 \mathrm{~cm}^{3} / \mathrm{min}$ or less	$\begin{gathered} 10^{-6} \mathrm{~Pa} \cdot \mathrm{~m}^{3} / \mathrm{sec} \\ \text { or less } \\ \hline \end{gathered}$
	1 MPa or more	$2 \mathrm{~cm}^{3} / \mathrm{min}$ or less	

[^2]How to Order (Solenoid Valve for Manifold)

Table (2) Solenoid Valve Option

| Option
 symbol | Seal material
 Main valve
 poppet | | Fixed
 sealant | Body
 material | Guide pin
 material | Coil
 insulation
 type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | Note Note) $^{\text {Nil }}$

* Aluminum is only available as a material for the manifold base.

Note) The leakage amount ($10^{-6} \mathrm{~Pa} \cdot \mathrm{~m}^{3} / \mathrm{sec}$) for the " V "option are values when the differential pressure is 0.1 MPa .
Table (3) Rated Voltage - Electrical Option

Rated voltage			Class B		
			S	L	Z
$\begin{aligned} & \mathrm{AC} / \\ & \mathrm{DC} \end{aligned}$	Voltage symbol	Voltage	With surge voltage suppressor	With light	With light and surge voltage suppressor
AC	1	100 V	- Note)	-	- Note)
	2	200 V		-	
	3	110 V		-	
	4	220 V		-	
	7	240 V		-	
	8	48 V		-	
	J	230 V		-	
DC	5	24 V	-	-	-
	6	12 V	-	-	-

* Class H coil is not available.

Note) Option S, Z are not available as surge voltage suppressor is integrated into the AC/Class B coil, as a standard.

For Water/Single Unit

Model / Valve Specifications

N.O. type: Pressure at port $3 \geq$ Pressure at port $2 \geq$ Pressure at port 1

Port size	Orifice diameter (mmø)	Model	Max. operating pressure differential ${ }^{\text {Note 3) }}(\mathrm{MPa})$			Flow rate characteristics ${ }^{\text {Note 1) }}$		Max. system pressure (MPa)	Note 2) Weight (g)
			N.C.	N.O.	COM.	Kv	Cv converted		
$\begin{gathered} 1 / 8 \\ (6 A) \end{gathered}$	1.5	VX311■-01	1	1	0.7	0.07	0.08	2.0	380
	2.2	VX312■-01	0.7	0.5	0.4	0.14	0.16		
	3	VX313■-01	0.3	0.3	0.2	0.21	0.24		
$\begin{gathered} 1 / 4 \\ (8 \mathrm{~A}) \end{gathered}$	1.5	VX311-02	1	1	0.7	0.07	0.08		
	2.2	VX312■-02	0.7	0.5	0.4	0.14	0.16		
		VX322■-02	1.2	1	0.7	0.16	0.19		530
		VX332■-02	1.6	1.6	1				730
	3	VX313 --02	0.3	0.3	0.2	0.21	0.24		380
		VX323 --02	0.6	0.5	0.3	0.28	0.33		530
		VX333■-02	1	0.9	0.6				730
	4	VX324■-02	0.3	0.25	0.2	0.43	0.50		530
		VX334■-02	0.5	0.4	0.3				730
$\begin{gathered} 3 / 8 \\ (10 A) \end{gathered}$	2.2	VX322■-03	1.2	1	0.7	0.16	0.19		530
		VX332■-03	1.6	1.6	1				730
	3	VX323■-03	0.6	0.5	0.3	0.28	0.33		530
		VX333 --03	1	0.9	0.6				730
	4	VX324■-03	0.3	0.25	0.2	0.43	0.50		530
		VX334■-03	0.5	0.4	0.3				730

Note 1) The flow rate characteristics of this product have variations.
When the highly precise flow control is required according to the system to be used, select an orifice diameter 1.3 times larger than that shown above and install a restrictor on the downstream side of the solenoid valve to make the adjustment.
Note 2) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.
Also, add 60 g for $V X 31 \square \square, 80 \mathrm{~g}$ for $\mathrm{VX} 32 \square \square$ and $V X 33 \square \square$ respectively for bracket option.
Note 3) Refer to "Glossary of Terms" on page 403, for details on the max. operating pressure differential and the max. system pressure.

Fluid and Ambient Temperature

Power source	Fluid temperature $\left({ }^{\circ} \mathrm{C}\right)$		Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
	Solenoid valve option (Symbol)		
	Nil, G, H	$\mathbf{E ,}, \mathbf{P}$	-20 to 60
AC	1 to 60	1 to 99	-20 to 40
DC	1 to 40	-	

[^3]
Valve Leakage Rate

Internal Leakage / External Leakage

Seal material	Max. operating pressure differential	Leakage rate (Water)
NBR, FKM, EPDM	From 0 to less than 1 MPa	$0.1 \mathrm{~cm}^{3} / \mathrm{min}$ or less
	1 MPa or more	$0.2 \mathrm{~cm}^{3} / \mathrm{min}$ or less

* Refer to Table (3) shown below for availability.
* Refer to Table (3) for available combinations between each electrical option (S, L, Z) and rated voltage.
Refer to page 401 for ordering coil only.

Table (1) Model/Orifice Diameter/Port Size

Solenoid valve model				Orifice symbol (Diameter)			
Model	VX31	VX32	VX33	$\begin{array}{\|c\|} \hline 1 \\ (1.5 \mathrm{~mm}) \end{array}$	$\begin{gathered} \mathbf{2} \\ (2.2 \mathrm{mmø}) \end{gathered}$	$\begin{gathered} \mathbf{3} \\ (3 \mathrm{mmø}) \end{gathered}$	$\begin{gathered} 4 \\ (4 \mathrm{mmø}) \end{gathered}$
Port symbol (Port size)	01 (1/8)	-	-	\bigcirc	\bigcirc	-	-
	02 (1/4)	-	-	\bigcirc	\bigcirc	\bigcirc	-
	-	02 (1/4)	$02(1 / 4)$	-	\bigcirc	\bigcirc	\bigcirc
	-	03 (3/8)	03 (3/8)	-	\bigcirc	\bigcirc	\bigcirc

Table (2) Solenoid Valve Option

Option symbol	Seal material		Body material/ Shading coil material	Guide pin material	Coilinsulation type	Note
	Main valve poppet	Fixed sealant				
Nil	NBR	NBR	Brass (C37)	PPS	B	-
G			Stainless steel			
E	EPDM	EPDM	Brass (C37)/Cu	Stainless steel	H	Heated water
P			Stainless steel/Ag			
H	FKM	FKM	Stainless steel	PPS	B	-

Table (3) Rated Voltage - Electrical Option

Rated voltage			Class B		
			S	L	Z
$\begin{aligned} & \mathrm{AC/} \\ & \mathrm{DC} \end{aligned}$	Voltage symbol	Voltage	With surge voltage suppressor	With light	With light and surge voltage suppressor
AC	1	100 V	- Note)	\bigcirc	- Note)
	2	200 V		-	
	3	110 V		-	
	4	220 V		-	
	7	240 V		-	
	8	48 V		-	
	J	230 V		-	
DC	5	24 V	\bigcirc	\bigcirc	-
	6	12 V	\bigcirc	-	-

Note) Option S, Z are not available as surge voltage suppressor is integrated into the AC/Class B coil, as a standard.

Rated voltage			Class H		
			S	L	Z
$\begin{aligned} & \mathrm{AC} / \\ & \mathrm{DC} \end{aligned}$	Voltage symbol	Voltage	With surge voltage suppressor	With light	With light and surge voltage suppressor
AC	1	100 V	\bigcirc	\bigcirc	\bigcirc
	2	200 V	-	-	-
	3	110 V	\bigcirc	\bigcirc	\bigcirc
	4	220 V	\bigcirc	\bigcirc	\bigcirc
	7	240 V	-	-	-
	8	48 V	\bigcirc	-	-
	J	230 V	\bigcirc	-	-
DC	5	24 V	DC specification is not available.		
	6	12 V			

For Oil／Single Unit

Model／Valve Specifications

The symbols show that the N．C．type：port 3 and N．O．type：port 1 are in a blocked state（T）．
However，use each port pressure in the state shown below．
N．C．type：Pressure at port $1 \geq$ Pressure at port $2 \geq$ Pressure at port 3
N．O．type：Pressure at port $3 \geq$ Pressure at port $2 \geq$ Pressure at port 1

Port size	Orifice diameter （mmø）	Model	Max．operating pressure differential ${ }^{\text {Note } 3)}(\mathrm{MPa})$			Flow rate characteristics ${ }^{\text {Note 1）}}$		Max．system pressure （MPa）	Note 2） Weight （g）
			N．C．	N．O．	COM．	Kv	Cv converted		
$\begin{gathered} 1 / 8 \\ (6 A) \end{gathered}$	1.5	VX311口－01	1	1	0.7	0.07	0.08	2.0	380
	2.2	VX312■－01	0.7	0.5	0.4	0.14	0.16		
	3	VX313口－01	0.3	0.3	0.2	0.21	0.24		
$\begin{gathered} 1 / 4 \\ (8 \mathrm{~A}) \end{gathered}$	1.5	VX311口－02	1	1	0.7	0.07	0.08		
	2.2	VX312■－02	0.7	0.5	0.4	0.14	0.16		
		VX322■－02	1.2	1	0.7	0.16	0.19		530
		VX332■－02	1.6	1.6	1				730
	3	VX313口－02	0.3	0.3	0.2	0.21	0.24		380
		VX323口－02	0.6	0.5	0.3	0.28	0.33		530
		VX333口－02	1	0.9	0.6				730
	4	VX324■－02	0.3	0.25	0.2	0.43	0.50		530
		VX334■－02	0.5	0.4	0.3				730
$\begin{gathered} 3 / 8 \\ (10 \mathrm{~A}) \end{gathered}$	2.2	VX322■－03	1.2	1	0.7	0.16	0.19		530
		VX332■－03	1.6	1.6	1				730
	3	VX323■－03	0.6	0.5	0.3	0.28	0.33		530
		VX333口－03	1	0.9	0.6				730
	4	VX324■－03	0.3	0.25	0.2	0.43	0.50		530
		VX334■－03	0.5	0.4	0.3				730

Note 1）The flow rate characteristics of this product have variations．
When the highly precise flow control is required according to the system to be used，select an orifice diameter 1.3 times larger than that shown above and install a restrictor on the downstream side of the solenoid valve to make the adjustment．
Note 2）Weight of grommet type．Add 10 g for conduit， 30 g for DIN terminal，and 60 g for conduit terminal type respectively．
Also，add 60 g for $\mathrm{VX} 31 \square \square, 80 \mathrm{~g}$ for $\mathrm{VX} 32 \square \square$ and $\mathrm{VX} 33 \square \square$ respectively for bracket option．
Note 3）Refer to＂Glossary of Terms＂on page 403，for details on the max．operating pressure differential and the max．system pressure．

Fluid and Ambient Temperature

Power source	Fluid temperature $\left({ }^{\circ} \mathrm{C}\right)$		Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
	Solenoid valve option（Symbol）		
	$\mathbf{A , H}$	\mathbf{D}, \mathbf{N}	-20 to 60
AC	$-5^{\text {Note）}}$ to 60	$-5^{\text {Note）}}$ to 120	-20 to 40
DC	$-5^{\text {Note）}}$ to 40	-	-20

[^4]
Valve Leakage Rate

Internal Leakage／External Leakage

Seal material	Max．operating pressure differential	Leakage rate（Oil）
FKM	From 0 to less than 1 MPa	$0.1 \mathrm{~cm}^{3} / \mathrm{min}$ or less
	1 MPa or more	$0.2 \mathrm{~cm}^{3} / \mathrm{min}$ or less

* Refer to Table (3) shown below for availability.

Refer to page 401 for ordering coil only.

Table (1) Model/Orifice Diameter/Port Size

Solenoid valve model				Orifice symbol (Diameter)			
Model	VX31	VX32	VX33	$\begin{gathered} \mathbf{1} \\ (1.5 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathbf{2} \\ (2.2 \mathrm{mmø}) \end{gathered}$	$\begin{gathered} \mathbf{3} \\ (3 \mathrm{mmø}) \end{gathered}$	$\begin{gathered} 4 \\ (4 \mathrm{mmø}) \end{gathered}$
Port symbol (Port size)	01 (1/8)	-	-	\bigcirc	\bigcirc	\bigcirc	-
	02 (1/4)	-	-	\bigcirc	\bigcirc	\bigcirc	-
	-	02 (1/4)	$02(1 / 4)$	-	\bigcirc	\bigcirc	\bigcirc
	-	03 (3/8)	03 (3/8)	-	\bigcirc	\bigcirc	\bigcirc

Table (2) Solenoid Valve Option

Option symbol	Seal material		Body material/ Shading coil material	Guide pin material	Coil insulation type
	Main valve poppet	Fixed sealant			
A	FKM	FKM	Brass (C37)	PPS	B
H			Stainless steel		
D			Brass (C37)/Cu	Stainless steel	H
N			Stainless steel/Ag		

Table (3) Rated Voltage - Electrical Option

Rated voltage			Class B		
			S	L	Z
$\begin{aligned} & \mathrm{AC} / \\ & \mathrm{DC} \end{aligned}$	Voltage symbol	Voltage	With surge voltage suppressor	With light	With light and surge voltage suppressor
AC	1	100 V	- Note)	-	- Note)
	2	200 V		-	
	3	110 V		-	
	4	220 V		-	
	7	240 V		-	
	8	48 V		-	
	J	230 V		-	
DC	5	24 V	\bigcirc	\bigcirc	-
	6	12 V	\bigcirc	-	-

Note) Option S, Z are not available as surge voltage suppressor is integrated into the AC/Class B coil, as a standard.

Rated voltage			Class H		
			S	L	Z
$\begin{aligned} & \mathrm{AC} / \\ & \mathrm{DC} \end{aligned}$	Voltage symbol	Voltage	With surge voltage suppressor	With light	With light and surge voltage suppressor
AC	1	100 V	\bigcirc	\bigcirc	\bigcirc
	2	200 V	-	-	,
	3	110 V	\bigcirc	\bigcirc	\bigcirc
	4	220 V	\bigcirc	\bigcirc	\bigcirc
	7	240 V	-	-	-
	8	48 V	-	-	-
	J	230 V	\bigcirc	-	-
DC	5	24 V	DC specification is not available.		
	6	12 V			

VVX31/32/33 Series

For Oil /Manifold

Solenoid Valve for Manifold / Valve Specifications

N.C.

Symbol

N.O.

Symbol

COM.

Symbol

Note) Symbols for N.C. and N.O. types
The symbols show that the N.C. type: port 3 and N.O. type: port 1 are in a blocked state (T).
However, use each port pressure in the state shown below.
N.C. type: Pressure at port $1 \geq$ Pressure at port $2 \geq$ Pressure at port 3
N.O. type: Pressure at port $3 \geq$ Pressure at port $2 \geq$ Pressure at port 1

Orifice diameter (mmø)	Model	Max. operating pressure differential ${ }^{\text {Note 2) }}$ (MPa)			Flow rate characteristics ${ }^{\text {Note 1) }}$		Max. system pressure (MPa)
		N.C.	N.O.	COM.	Kv	Cv converted	
1.5	VX311■-00	1	1	0.7	0.07	0.08	2.0
2.2	VX312■-00	0.7	0.5	0.4	0.14	0.16	
	VX322■-00	1.2	1	0.7	0.16	0.19	
	VX332■-00	1.6	1.6	1			
3	VX313■-00	0.3	0.3	0.2	0.21	0.24	
	VX323 \square-00	0.6	0.5	0.3	0.28	0.33	
	VX333 \square-00	1	0.9	0.6			
4	VX324■-00	0.3	0.25	0.2	0.43	0.50	
	VX334■-00	0.5	0.4	0.3			

Note 1) The flow rate characteristics of this product have variations.
When the highly precise flow control is required according to the system to be used, select an orifice diameter 1.3 times larger than that shown above and install a restrictor on the downstream side of the solenoid valve to make the adjustment.
Note 2) Refer to "Glossary of Terms" on page 403 for details on the max. operating pressure differential and the max. system pressure.

Fluid and Ambient Temperature

Power source	Fluid temperature $\left({ }^{\circ} \mathrm{C}\right)$		Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
	Solenoid valve option $($ Symbol $)$		
	A	D	-20 to 60
AC	$-5^{\text {Note) }}$ to 60	$-5^{\text {Note) }}$ to 120	-20 to 40
DC	$-5^{\text {Note) }}$ to 40	-	-

Note) Dynamic viscosity: $50 \mathrm{~mm}^{2} / \mathrm{s}$ or less

Valve Leakage Rate

Internal Leakage / External Leakage

Seal material	Max. operating pressure differential	Leakage rate (Oil)
FKM	From 0 to less than 1 MPa	$0.1 \mathrm{~cm}^{3} / \mathrm{min}$ or less
	1 MPa or more	$0.2 \mathrm{~cm}^{3} / \mathrm{min}$ or less

How to Order (Solenoid Valve for Manifold)

Table (1) Model/Orifice/Diameter

Solenoid valve model	Orifice symbol (Diameter)			
	$\begin{array}{\|c\|} \hline \mathbf{1} \\ (1.5 \mathrm{~mm} \varnothing) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{2} \\ (2.2 \mathrm{~mm}) \\ \hline \end{array}$	$\begin{gathered} \mathbf{3} \\ (3 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathbf{4} \\ (4 \mathrm{~mm}) \\ \hline \end{gathered}$
VX31	-	\bigcirc	\bigcirc	-
VX32	-	-	\bigcirc	\bigcirc
VX33	-	-	-	-

Table (2) Solenoid Valve Option

Option symbol	Seal material Main valve poppet	Fixed sealant	Body material/ Shading coil material	Guide pin material	Coil insulation type
	FKM	FKM	Brass (C37)	PPS	B
			Brass (C37)/Cu	Stainless steel	H

* Aluminum is only available as a material for the manifold base.

Table (3) Rated Voltage - Electrical Entry - Electrical Option

Rated voltage			Class B			Class H		
			S	L	Z	S	L	Z
$\begin{aligned} & \mathrm{AC} / \\ & \mathrm{DC} \end{aligned}$	Voltage symbol	Voltage	$\begin{gathered} \text { With surge } \\ \text { voltage } \\ \text { suppressor } \end{gathered}$	With light	With light and surge voltage suppressor	With surge voltage suppresso	With light	With light and surge voltage suppressor
AC	1	100 V	- Note)	\bigcirc	- Note)	-	\bigcirc	\bigcirc
	2	200 V		-		-	\bigcirc	\bigcirc
	3	110 V		\bigcirc		\bigcirc	\bigcirc	\bigcirc
	4	220 V		-		-	-	-
	7	240 V		-		-	-	-
	8	48 V		-		\bigcirc	-	-
	J	230 V		-		\bigcirc	-	-
DC	5	24 V	\bigcirc	\bigcirc	\bigcirc	DC specification is not available.		
	6	12 V	\bigcirc	-	-			

Note) Option S, Z are not available as surge voltage suppressor is integrated into the AC/Class B coil, as a standard.

For Steam/Single Unit

Model / Valve Specifications

COM.

Port size	Orifice diameter (mmø)	Model	Max. operating pressure differential Note 3) (MPa)	Flow rate characteristics ${ }^{\text {Note 1) }}$		Max. system pressure (MPa)	Note 2) Weight (g)
			COM.	Kv	Cv converted		
$\begin{gathered} 1 / 8 \\ (6 A) \end{gathered}$	1.5	VX3114-01	0.7	0.07	0.08	1.0	380
	2.2	VX3124-01	0.4	0.14	0.16		
	3	VX3134-01	0.2	0.21	0.24		
$\begin{gathered} 1 / 4 \\ (8 \mathrm{~A}) \end{gathered}$	1.5	VX3114-02	0.7	0.07	0.08		
	2.2	VX3124-02	0.4	0.14	0.16		
		VX3224-02	0.7	0.16	0.19		530
		VX3324-02	1				730
	3	VX3134-02	0.2	0.21	0.24		380
		VX3234-02	0.3	0.28	0.33		530
		VX3334-02	0.6				730
	4	VX3244-02	0.2	0.43	0.50		530
		VX3344-02	0.3				730
$\begin{gathered} 3 / 8 \\ (10 A) \end{gathered}$	2.2	VX3224-03	0.7	0.16	0.19		530
		VX3324-03	1				730
	3	VX3234-03	0.3	0.28	0.33		530
		VX3334-03	0.6				730
	4	VX3244-03	0.2	0.43	0.50		530
		VX3344-03	0.3				730

Note 1) The flow rate characteristics of this product have variations.
When the highly precise flow control is required according to the system to be used, select an orifice diameter 1.3 times larger than that shown above and install a restrictor on the downstream side of the solenoid valve to make the adjustment.
Note 2) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.
Also, add 60 g for VX31ロロ, 80 g for VX32■■ and VX33 $\square \square$ respectively for bracket option.
Note 3) Refer to "Glossary of Terms" on page 403, for details on the max. operating pressure differential and the max. system pressure.

Fluid and Ambient Temperature

Power source	Fluid temperature (${ }^{\circ} \mathrm{C}$)	Ambient temperature ($\left.{ }^{\circ} \mathrm{C}\right)$
	Solenoid valve option (Symbol)	
	S, Q	
AC	183	-20 to 60

Valve Leakage Rate

Internal Leakage

Seal material	Leakage rate (Air)
FFKM	$150 \mathrm{~cm}^{3} / \mathrm{min}$ or less

External Leakage

Seal material	Leakage rate (Air)
PTFE	$1 \mathrm{~cm}^{3} / \mathrm{min}$ or less

Table (1) Model/Orifice Diameter/Port Size

Solenoid valve model				Orifice symbol (Diameter)			
Model	VX31	VX32	VX33	$\begin{gathered} 1 \\ (1.5 \mathrm{~mm} \sigma) \end{gathered}$	$\begin{gathered} \mathbf{2} \\ (2.2 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 3 \\ (3 \mathrm{mmø}) \end{gathered}$	$\begin{gathered} 4 \\ (4 \mathrm{mmø}) \end{gathered}$
Port symbol (Port size)	01 (1/8)	-	-	\bigcirc	\bigcirc	\bigcirc	-
	02 (1/4)	-	-	\bigcirc	\bigcirc	\bigcirc	-
	-	02 (1/4)	$02(1 / 4)$	-	\bigcirc	\bigcirc	\bigcirc
	-	03 (3/8)	03 (3/8)	-	\bigcirc	\bigcirc	\bigcirc

Table (2) Solenoid Valve Option

Option symbol	Seal material		Body material/ Shading coil material	Guide pin material	Coil insulation type
	Main valve poppet	Fixed sealant			
S	FFKM	PTFE	Brass (C37)/Cu	Stainless steel	H
Q			Stainless steel/Ag		

Table (3) Rated Voltage - Electrical Option

Rated voltage			Class H		
			S	L	Z
$\begin{aligned} & \mathrm{AC/} \\ & \mathrm{DC} \end{aligned}$	Voltage symbol	Voltage	With surge voltage suppressor	With light	With light and surge voltage suppressor
AC	1	100 V	-	\bigcirc	-
	2	200 V	\bigcirc	\bigcirc	\bigcirc
	3	110 V	-	\bigcirc	-
	4	220 V	-	\bigcirc	-
	7	240 V	-	-	-
	8	48 V	\bigcirc	-	-
	J	230 V	-	-	-
DC	5	24 V	DC specification is not available.		
	6	12 V			

Solenoid coil: AC/Class H only

For Vacuum Pad / Single Unit VXV31/32/33 Series

- Vacuum circuit side is suited for a large orifice. Supply pressure side is suited for high pressure and a vacuum pad.
- Construction and dimensions are the same as the VX3 series.

Model / Valve Specifications

Note 1) The flow rate characteristics of this product have variations.
When the highly precise flow control is required according to the system to be used, select an orifice diameter 1.3 times larger than that shown above and install a restrictor on the downstream side of the solenoid valve to make the adjustment.
Note 2) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.
Also, add 60 g for $\mathrm{VX} 31 \square \square, 80 \mathrm{~g}$ for $\mathrm{VX} 32 \square \square$ and $\mathrm{VX} 33 \square \square$ respectively for bracket option.
Note 3) Refer to "Glossary of Terms" on page 403, for details on the max. system pressure.

* Low vacuum: Up to $1.3 \times 10^{2} \mathrm{~Pa}$-abs

Fluid and Ambient Temperature

Power source	Fluid temperature $\left({ }^{\circ} \mathrm{C}\right)$	Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
AC	$-10^{\text {Note) }}$ to 60	-20 to 60
DC	$-10^{\text {Note) }}$ to 60	-20 to 40

Note 1) Dew point temperature: $-10^{\circ} \mathrm{C}$ or less

Valve Leakage Rate

Internal Leakage / External Leakage

Seal material	Leakage rate ${ }^{\text {Note) }}$
	Air
NBR, FKM	$1 \mathrm{~cm}^{3} / \mathrm{min}$ or less

[^5]How to Order (Single Unit)

Table (1) Model/Orifice Diameter/Port Size

Solenoid valve model				Orifice symbol (Diameter) Note)	
Model	VXV31	VXV32	VXV33	$\mathbf{3}$ $(1.5 / 3 \mathrm{~mm} \mathrm{\varnothing})$	$\mathbf{4}$ $(2.2 / 4 \mathrm{~mm} \mathrm{\sigma})$
	$\mathbf{0 1 (1 / 8)}$	$\mathbf{0 2 (1 / 4)}$	-	-	-
\boldsymbol{O}	-	-			
	-	$\mathbf{0 2 (1 / 4)}$	$\mathbf{0 2 (1 / 4)}$	-	-
	$\mathbf{0 3}(3 / 8)$	$\mathbf{0 3}(3 / 8)$	-	-	

Note) The orifice diameter shown above are for the supply pressure side/ vacuum side port.

Table (2) Solenoid Valve Option

Option symbol	Seal material		Body material	Guide pin material	Coil insulation type
	Main valve poppet	Fixed sealant			
Nil	NBR	NBR	Brass (C37)	PPS	B
A	FKM	FKM			
G	NBR	NBR	Stainless steel		
H	FKM	FKM			

Table (3) Rated Voltage - Electrical Option

Rated voltage			Class B		
			S	L	Z
$\begin{aligned} & \mathrm{AC} / \\ & \mathrm{DC} \end{aligned}$	Voltage symbol	Voltage	$\begin{aligned} & \text { With surge } \\ & \text { voltage } \\ & \text { suppressor } \end{aligned}$	With light	With light and surge voltage suppressor
AC	1	100 V	- Note)	-	- Note)
	2	200 V		-	
	3	110 V		-	
	4	220 V		-	
	7	240 V		-	
	8	48 V		-	
	J	230 V		-	
DC	5	24 V	\bigcirc	\bigcirc	\bigcirc
	6	12 V	-	-	-

Note) Option S, Z are not available as surge voltage suppressor is integrated into the AC/Class B coil, as a standard.

* Class H coil is not available.

For Vacuum Pad / Manifold VVXV31/32/33 Series

- Construction and dimensions are the same as those of the VVX3 series.

Model / Valve Specifications
N.C.

N.O.

Symbol (example)

Orifice diameter (mmø)		Model	Operating pressure* (MPa)		Flow rate characteristics						$\mathrm{Max}^{\text {Note }}$ system pressure(MPa)	
		Passage: $1 \Leftrightarrow 2$			Passage: $2 \Leftrightarrow 3$							
Port 1 side	Port 3 side		Port 1 side	Port 3 side	$\begin{aligned} & C\left[\mathrm{dm}^{3} /\right. \\ & (\mathrm{s} \cdot \mathrm{bar})] \\ & \hline \end{aligned}$	b	Cv	$\begin{aligned} & {\left[\mathrm{dm}^{3}{ }^{\prime}\right.} \\ & (\mathrm{s} \cdot \mathrm{bar})] \end{aligned}$	b	Cv		
3	1.5		VXV3131-00	Low vacuum	0 to 0.5	0.82	0.20	0.20	0.29	0.32	0.08	2.0
1.5	3	VXV3133-00	0 to 0.5	Low vacuum	0.29	0.32	0.08	0.82	0.20	0.20		
4	2.2	VXV3241-00	Low vacuum	0 to 0.5	1.6	0.20	0.38	0.64	0.40	0.17		
		VXV3341-00		0 to 0.9								
2.2	4	VXV3243-00	0 to 0.5	Low vacuum	0.64	0.40	0.17	1.6	0.20	0.38		
		VXV3343-00	0 to 0.9									

Note) Refer to "Glossary of Terms" on page 403 for details on the max. system pressure.

* Low vacuum: Up to $1.3 \times 10^{2} \mathrm{~Pa}$ abs

Fluid and Ambient Temperature

Power source	Fluid temperature $\left({ }^{\circ} \mathrm{C}\right)$	Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
AC	$-10^{\text {Note) }}$ to 60	-20 to 60
DC	$-10^{\text {Note) }}$ to 60	-20 to 40

Note 1) Dew point temperature: $-10^{\circ} \mathrm{C}$ or less

Valve Leakage Rate

Internal Leakage / External Leakage

Seal material	Leakage rate ${ }^{\text {Note) }}$
	Air
NBR, FKM	$1 \mathrm{~cm}^{3} / \mathrm{min}$ or less

Note) Value when air pressure is applied.

VX31/32/33 Series

For Air, Water, Oil, Steam

Construction

Single unit
 Body material: Brass (C37), Stainless steel

Component Parts

No.	Description	Material	
		Standard	Option
1	Body	Brass (C37)	Stainless steel
2	Tube assembly Note)	Stainless steel, Cu	Stainless steel, Ag
3	Armature assembly	Stainless steel, C36, PTFE (NBR)	Stainless steel, PTFE (FKM, EPDM, FFKM)
4	Return spring	Stainless steel	
5	Nut	Brass (C37)	Brass (C37)/Ni plated
6	Solenoid coil	Class B molded	Class H molded
7	O-ring	(NBR)	(FKM, EPDM, PTFE)
8	Clip	SK	
9	Guide pin assembly	PPS, C36 (NBR)	Stainless steel (FKM, EPDM, FFKM)
10	Support spring	Stainless steel	
11	O-ring	(NBR)	(FKM, EPDM, PTFE)
12	Plate	Stainless steel	

The materials in parentheses are the seal materials.
Note) Cu and Ag are not applicable to the DC spec and to the AC spec with built-in full-wave rectifier.

Manifold
 Base material: Aluminum
 Manifold body material: Brass (C37)

Component Parts

No.	Description	Material	
		Standard	Option
1	Manifold body	Brass (C37)	
2	Tube assembly ${ }^{\text {Note) }}$	Stainless steel, Cu	
3	Armature assembly	Stainless steel, C36, PTFE (NBR)	Stainless steel, PTFE (FKM, EPDM)
4	Return spring	Stainless steel	
5	Nut	Brass (C37)	Brass (C37)/Ni plated
6	Solenoid coil	Class B molded	Class H molded
7	O-ring	(NBR)	(FKM, EPDM)
8	Clip	SK	
9	Guide pin assembly	PPS, C36 (NBR)	Stainless steel (FKM, EPDM)
10	Support spring	Stainless steel	
11	O-ring	(NBR)	(FKM, EPDM)
12	Plate	Stainless steel	
13	Gasket	(NBR)	(FKM, EPDM)
14	Base	Aluminum	

The materials in parentheses are the seal materials.
Note) Cu is not applicable to the DC spec and to the AC spec with built-in full-wave rectifier.

Dimensions: Single Unit / Body Material: Brass (C37), Stainless Steel
$\begin{array}{lll}\text { Normally closed (N.C.) } & \text { : VX31 } \square 0 / \text { VX32 } \square 0 / \text { /XX33 } \square 0 \\ \text { Normally open (N.O.) } & \text { : VX31 } \square 2 / V X 32 \square 2 / V X 33 \square 2 \\ \text { Common (COM.) } & \text { : VX31 } \square 4 / V X 32 \square 4 / V X 33 \square 4\end{array}$

Grommet: G

DIN terminal: D

Conduit: C

Conduit terminal: T

With bracket

(mm)

Model	Orifice diameter	Port size P	Electrical entry (AC/Class B)										
			Grommet		Conduit		DIN terminal			Conduit terminal			
N.C., N.O., COM.			J	K	J	K	J	K	M	J	K	M	N
VX31 $\square \square$	ø1.5, ø2.2, $\varnothing 3$	1/8	30	46	48.5	41	65.5	42	53.5	100.5	41	69.5	91.5
VX31 $\square \square$	ø1.5, ø2.2, ø3	1/4											
VX32 $\square \square$	ø2.2, ø3, ø4	1/4, 3/8	33	56	51.5	51	68.5	52	56.5	103.5	51	72.5	105
VX33 $\square \square$	ø2.2, ø3, ø4	1/4, 3/8	36	64.5	54	59.5	71	60.5	59	106	59.5	75	113

(mm)

Model	Orifice diameter	Port size P	A	B		C	D	E	F	H	Electrical entry (DC, AC/Class H)											Bracket mounting				
						Grommet					Conduit		DIN terminal			Conduit terminal										
N.C., N.O., COM.				B1	B2						J	K	J	K	J	K	M	J	K	M	N	Q	R	S	T	
VX31■ \square	ø1.5, ø2.2, ø3	1/8	22	36	18		76.5	30	19	19.5	27	19.5	50	40	425	58.5	42	46.5	92	42.5	61	93	175	40	50	75.5
VX31 $\square \square$	ø1.5, $02.2, ~ ø 3$	1/4	22	41	20.5	6.5	30	19	19.5	27	19.5	50	40	42.5	58.5	42	46.5	92	42.5	61	93	17.5	40	50	75.5	
VX32 $\square \square$	ø2.2, ø3, ø4	1/4, 3/8	24	42	21	90	35	22	22.5	32	22.5	60	43	52.5	61.5	52	49.5	95	52.5	64	106.5	21	47	57	89	
VX33 $\square \square$	ø2.2, ø3, ø4	1/4, 3/8	24	42	21	98	40	22	25	36	25.5	68.5	46	61	64	60.5	52	98	61	66.5	114.5	21	47	57	97	
											\sqrt{C}														399	

VVX31/32/33 Series

For Air, Oil / Manifold

Dimensions: Manifold / Base Material: Aluminum

Normally closed (N.C.) :
Normally open (N.O.) : VVX31/VVX32/VVX33
Common (COM.) :

Model	$\begin{aligned} & \text { Dimen- } \\ & \text { sion } \end{aligned}$	n (stations)								
		2	3	4	5	6	7	8	9	10
VVX31	L1	96	132	168	204	240	276	312	348	384
	L2	84	120	156	192	228	264	300	336	372
VVX32 VVX33	L1	126	172	218	264	310	356	402	448	494
	L2	108	154	200	246	292	338	384	430	476

Model	A	B	C	D	E	F	H	J	K	L	M	N	Q	Electrical entry (DC, AC/Class H)								
														Grommet	Conduit		DIN terminal			Conduit terminal		
														R	S	T	T	U	V	W	X	Y
VVX31	40	20	9	22	6.5	33	24	26	36	6	49	19.5	80.5	19.5	40	45.5	45	58.5	46.5	92	61	97
VVX32	44	22	10	24	8.5	34	25	31	46	9	55	22.5	91	22.5	43	54	53.5	61.5	49.5	95	64	107.5
VVX33	44	22	10	24	8.5	34	25	31	46	9	55	25	99.5	25.5	46	62	61.5	64	52	98	66.5	116

(mm)

Model	Electrical entry (AC/Class B)								
	Grommet	Conduit		DIN terminal			Conduit terminal		
	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}
VVX31	30	48.5	44	45	65.5	53.5	100.5	69.5	95.5
VVX32	33	51.5	52.5	53.5	68.5	56.5	103.5	72.5	106
VVX33	36	54	60.5	61.5	71	59	106	75	114.5

Replacement Parts

- Solenoid coil assembly part no.

 and rated voltage.

AC/Class B coil (Built-in full-wave rectifier type)

Table (1) Rated Voltage - Electrical Option

Rated voltage			Class B			Class H		
			S	L	Z	S	L	Z
$\begin{aligned} & \hline \mathrm{AC/} \\ & \mathrm{DC} \end{aligned}$	Voltage symbol	Voltage	$\begin{array}{\|c\|} \hline \text { With surge } \\ \text { voltage } \\ \text { suppressor } \\ \hline \end{array}$	With light	With light and surge voltage suppressor	With surge voltage suppresso	With light	$\begin{array}{\|c\|} \hline \text { With light and } \\ \text { surge voltage } \\ \text { suppressor } \end{array}$
AC	1	100 V	- Note)	\bigcirc	- Note)	\bigcirc	\bigcirc	-
	2	200 V		-		\bigcirc	-	\bigcirc
	3	110 V		\bigcirc		\bigcirc	\bigcirc	\bigcirc
	4	220 V		\bigcirc		\bigcirc	\bigcirc	\bigcirc
	7	240 V		-		-	-	-
	8	48 V		-		\bigcirc	-	-
	J	230 V		-		-	-	-
DC	5	24 V	\bigcirc	\bigcirc	\bigcirc	DC specification is not available.		
	6	12 V	-	-	-			

Note) Option S, Z are not available since a surge voltage suppressor is integrated into the AC/Class B coil, as a standard.

* When changing coils, $A C / D C$ are not interchangeable with each other, and Class B and H coils are also not interchangeable with each other.

AC/Class H coil

[^6]
VX31/32/33 Series

For Air, Water, Oil, Steam

Replacement Parts

- Name plate part no.

AZ-T-VX Valve model
Enter by referring to
"How to Order".

- Clip part no.

For VX31: VX021N-10
For VX32: VX022N-10
For VX33: VX023N-10

- DIN connector part no.

Without electrical option 3G-GDM2A

Rated voltage	
$\mathbf{1}$	$100 \mathrm{VAC}, 110 \mathrm{VAC}$
$\mathbf{2}$	$200 \mathrm{VAC}, 220 \mathrm{VAC}, 230 \mathrm{VAC}, 240 \mathrm{VAC}$
$\mathbf{5}$	24 VDC
$\mathbf{6}$	12 VDC
$\mathbf{1 5}$	48 VAC

- Gasket part no. for DIN connector

VCW20-1-29-1

VX3 Series
 Glossary of Terms

Pressure Terminology

1. Maximum operating pressure differential

The maximum pressure differential (the difference between the inlet and outlet pressure) which is allowed for operation. When the outlet pressure is 0 MPa , this becomes the maximum operating pressure.
2. Minimum operating pressure differential

The minimum pressure differential (the difference between the inlet pressure and outlet pressure) required to keep the main valve fully opened.
3. Maximum system pressure

The maximum pressure that can be applied inside the pipelines (line pressure).
(The pressure differential of the solenoid valve portion must be less than the maximum operating pressure differential.)

4. Proof pressure

The pressure in which the valve must be withstood without a drop in performance after holding for one minute under prescribed pressure and returning to the operating pressure range. (value under the prescribed conditions)

Electrical Terminology

1. Apparent power (VA)

Volt-ampere is the product of voltage (V) and current (A).
Power consumption (W): For AC, W = V.A $\cdot \cos \theta$. For DC, W = V.A.
Note) $\cos \theta$ shows power factor. $\cos \theta=0.6$
2. Surge voltage

A high voltage which is momentarily generated by shutting off the power in the shut-off area.

3. Enclosure

A degree of protection defined in the "JIS C 0920: Waterproof test of electric machinery/appliance and the degree of protection against the intrusion of solid foreign objects".
Verify the degree of protection for each product.

- First Characteristics:

Degrees of protection against solid foreign objects

$\mathbf{0}$	Non-protected
$\mathbf{1}$	Protected against solid foreign objects of $50 \mathrm{~mm} \varnothing$ and greater
$\mathbf{2}$	Protected against solid foreign objects of $12 \mathrm{~mm} \varnothing$ and greater
$\mathbf{3}$	Protected against solid foreign objects of $2.5 \mathrm{~mm} \varnothing$ and greater
$\mathbf{4}$	Protected against solid foreign objects of $1.0 \mathrm{~mm} \varnothing$ and greater
$\mathbf{5}$	Dust-protected
$\mathbf{6}$	Dusttight

- Second Characteristics:

Degrees of protection against water

$\mathbf{0}$	Non-protected	-
$\mathbf{1}$	Protected against vertically falling water drops	Dripproof type 1
$\mathbf{2}$	Protected against vertically falling water drops when enclosure tilted up to 15°	Dripproof type 2
$\mathbf{3}$	Protected against rainfall when enclosure tilted up to 60°	Rainproof type
$\mathbf{4}$	Protected against splashing water	Splashproof type
$\mathbf{5}$	Protected against water jets	Low jetproof type
$\mathbf{6}$	Protected against powerful water jets	Strong jetproof type
$\mathbf{7}$	Protected against the effects of temporary immersion in water	Immersible type
$\mathbf{8}$	Protected against the effects of continuous immersion in water	Submersible type

Example) IP65: Dusttight, Low jetproof type
"Low jetproof type" means that no water intrudes inside an equipment that could hinder from operating normally by means of applying water for 3 minutes in the prescribed manner. Take appropriate protection measures, since a device is not usable in an environment where a droplet of water is splashed constantly.
Others

1. Material

NBR: Nitrile rubber
FKM: Fluororubber
EPDM: Ethylene propylene rubber
PTFE: Polytetrafluoroethylene resin
FFKM: Perfluoroelastomer

2. Oil-free treatment

The degreasing and washing of wetted parts.

3. Passage symbol

In the symbol ($\pi_{1]_{1}^{+}}$) Port 1 (IN) and Port 2 (OUT) are shown in a blocked condition ($\stackrel{+}{\top}$), but it is not possible to use the valve in cases of reverse pressure, where the Port 2 pressure is higher than the Port 1 pressure.

Be sure to read this before handling the products. For detailed precautions on each series, refer to the main text.

Selection

\triangle Warning

1. Minimum operating pressure differential (VXED, VXP, VXR)
Select an appropriate valve size while referring to the solenoid valve flow rate characteristics.

\triangle Caution

1. Leakage voltage

When the solenoid valve is operated using the controller, etc., the leakage voltage should be the product allowable leakage voltage or less. Particularly when using a resistor in parallel with a switching element and using a C-R element (surge voltage suppressor) to protect the switching element, take note that leakage current will flow through the resistor, C-R element, etc., creating a possible danger that the valve may not turn off.

AC/Class B built-in full-wave rectifier coil: 10\% or less of rated voltage (VX3: 5% or less)
AC/Class B/H coil: 20% or less of rated voltage
DC coil: 2% or less of rated voltage
2. Selecting options

The fluid handled will differ depending on the valve options. Select optimal options for the fluid.
3. When the fluid is oil.

Generally, FKM is used as seal material, as it is resistant to oil. The resistance of the seal material may deteriorate depending on the type of oil, manufacturer or additives. Check the resistance before using. The kinematic viscosity must not exceed $50 \mathrm{~mm}^{2} / \mathrm{s}$.
The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON. Select the DC spec. or AC spec. built-in full-wave rectifier type when the dynamic viscosity is higher than water or when the OFF response is prioritized.

Piping

\triangle Caution

1. If a regulator and valve are connected directly, they may vibrate together and cause chattering. Do not connect directly.
2. If the cross-sectional area of piping for the fluid supply side is restricted, operation will become unstable due to inadequate pressure differential during valve operation. Use piping size for the fluid supply side that is suited to the port size.
3. The behavior of the diaphragm valve becomes unstable under the conditions that the circuit flow rate is restricted to 40% or less of the maximum flow rate on the solenoid valve flow rate characteristics. This may cause unstable valve activation. So, select a solenoid valve with an appropriate flow rate size while carefully checking the circuit flow rate.

Wiring
 © Caution
 1. As a rule, use electrical wire with a cross sectional area of 0.5 to $1.25 \mathrm{~mm}^{2}$ for wiring.
 Furthermore, do not allow excessive force to be applied to the lines.

2. Use electrical circuits which do not generate chattering in their contacts.
3. Use voltage which is within $\pm 10 \%$ of the rated voltage. In cases with a DC power supply where importance is placed on responsiveness, stay within $\pm 5 \%$ of the rated value. The voltage drop is the value in the lead wire section connecting the coil.
4. When a surge from the solenoid affects the electrical circuitry, install a surge voltage suppressor, etc., in parallel with the solenoid. Or, adopt an option that comes with the surge voltage protection circuit. (However, a surge voltage occurs even if the surge voltage protection circuit is used.)

Operating Precautions

© Warning

1. Make sure when using pilot type 2-port solenoid valves that the flow direction is from 1 (IN) to 2 (OUT). The valve is designed based on a flow direction of 1 (IN) to 2 (OUT) and harnesses the fluid pressure of port 1 (IN) when the valve opens or closes. If reverse pressure (2 (OUT) to $1(\mathrm{IN})$) is applied, it may lead to a reduced service life or cause damage to parts early on due to chattering or pulses from the main valve (diaphragm, piston, etc.). If there is a possibility that reverse pressure will be applied, take countermeasures by installing the check valve, etc. at the downstream side.
When installing the check valve, allow ample space between the valve and the check valve. If it is placed near the valve, it may cause chattering and pulses in the main valve.

2/3 Port Solenoid Valves for Fluid Control Specific Product Precautions 2

Be sure to read this before handling the products. For detailed precautions on each series, refer to the main text.

Electrical Connections

© Caution

DIN terminal

Internal connections are as shown below. Make connections to the power supply accordingly.

Terminal no.	1	2
DIN terminal	$+(-)$	$-(+)$

* There is no polarity.

DIN (EN175301-803) Terminal

This DIN terminal corresponds to the Form A DIN connector with an 18 mm terminal pitch, which complies with EN175301-803B.

Disassembly

1. After loosening the binding head screw with flange, then if the housing is pulled in the direction of the arrow, the connector will be removed from the solenoid valve.
2. Pull out the binding head screw with flange from the housing.
3. There is a cutout on the bottom of the terminal block. Insert a small flat head screwdriver, etc. into this cutout, and remove the terminal block from the housing. (See figure below.)
4. Remove the ground nut, and pull out the washer and the rubber seal.

Wiring

1. Pass the cable through the ground nut, washer and rubber seal in this order, and insert these parts into the housing.
2. Loosen the binding head screw of the terminal block, then insert the core wire or the crimped terminal of the lead wire into the terminal, and securely fix it with the binding head screw. The binding head screw of the terminal block is M3.
Note 1) Tighten the screw to a torque of between 0.5 and $0.6 \mathrm{~N} \cdot \mathrm{~m}$.
Note 2) Cable O.D.: $\varnothing 6$ to $ø 12 \mathrm{~mm}$
Note 3) For an outside cable diameter of $\varnothing 9$ to 12 mm , remove the internal parts of the rubber seal before using.

\triangle Caution

Assembly

1. Pass the cable through the ground nut, washer, rubber seal and the housing in this order, and connect to the terminal block. Then, set the terminal block inside the housing. (Push in the terminal block until it snaps into position.)
2. Insert the rubber seal and the washer in this order into the cable entry of the housing, and then tighten the ground nut securely.
3. Insert the gasket between the bottom part of the terminal block and the plug attached to the equipment, and then insert the binding head screw with flange from the top of the housing, and tighten it.
Note 1) Tighten the screw to a torque of between 0.5 and $0.6 \mathrm{~N} \cdot \mathrm{~m}$.
Note 2) The orientation of the connector can be changed in steps of 90° by changing the method of assembling the housing and the terminal block.

Conduit terminal

Make connections according to the marks shown below.

- Use the tightening torques below for each section.
- Properly seal the terminal connection (G1/2) with the special wiring conduit, etc.

View A-A
(Internal connection diagram)

Disassembly

1. Loosen the mounting screw, and remove the terminal cover from the conduit terminal.

Wiring

1. Insert the cable into the conduit terminal.
2. Loosen the screw with UP terminal of the conduit terminal, then insert the core wire or the crimped terminal of the lead wire into the terminal, and securely fix it with the screw with UP terminal. Note 1) Tighten the screw to a torque of between 0.5 and $0.6 \mathrm{~N} \cdot \mathrm{~m}$.

VX3 Series

2/3 Port Solenoid Valves for Fluid Control Specific Product Precautions 3

Be sure to read this before handling the products. For detailed precautions on each series, refer to the main text.

Electrical Connections

\triangle Caution

Assembly

1. Insert the gasket into the conduit terminal, and then clamp the terminal cover with the mounting screw.
Note 1) Tighten the screw to a torque of between 0.5 and $0.6 \mathrm{~N} \cdot \mathrm{~m}$. Note 2) When changing the orientation of the conduit terminal, carry out the following procedure.
2. Apply a tool (monkey wrench, spanner, etc.) to the width across flats of the conduit terminal, and turn the terminal in the counterclockwise direction.
3. Loosen the lock nut.
4. Turn the conduit terminal in the clamping direction (clockwise direction) to about 15° ahead of the desired position.
5. Turn the lock nut by hand to the coil side until it is lightly tightened.
6. Apply a tool to the width across flats of the conduit terminal, and turn it to the desired position (through an angle of about 15°) so as to clamp the conduit terminal.
Note: When changing the orientation by applying additional tightening force to the conduit terminal from the factory-set position, turn no more than one half a turn.

Conduit

When used as an IP65 equivalent, use seal (part no. VCW20-15-6) to install the wiring conduit. Also, use the tightening torque below for the conduit.

Class H coil: AWG18 Insulator O.D. 2.2 mm
Class B coil: AWG20 Insulator O.D. 2.5 mm

(Bore size
Tightening torque 0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$)

Rated voltage	Lead wire color	
	(1)	(2)
DC	Black	Red
100 VAC	Blue	Blue
200 VAC	Red	Red
Other AC	Gray	Gray

* There is no polarity for DC.

Description	Part no.
Seal	VCW20-15-6

[^7]
Electrical Circuits

\triangle Caution

[DC circuit]

Grommet, Conduit,
Conduit terminal,
DIN type

Without electrical option

Conduit terminal,
DIN type

With light

Grommet, Conduit terminal, DIN type

With surge voltage suppressor

Conduit terminal,

With light/surge voltage suppressor
[AC, Class B (Built-in full wave rectifier type) Circuit]

* For AC/Class B, the standard product is equipped with surge voltage suppressor.

[AC, Class B/H Circuit]

With surge voltage suppressor

Conduit terminal

With light/surge voltage suppressor

[^0]: * Aluminum is only available with the material for a manifold base.

[^1]: Note) The leakage amount ($10^{-6} \mathrm{~Pa} \cdot \mathrm{~m}^{3} / \mathrm{sec}$) for the " V " and " M " option are values when the differential pressure is 0.1 MPa .

[^2]: Note）The leakage amount（ $10^{-6} \mathrm{~Pa} \cdot \mathrm{~m}^{3} / \mathrm{sec}$ ）for the＂ V ＂option are values when the differential pressure is 0.1 MPa ．

[^3]: Note) With no freezing

[^4]: Note）Dynamic viscosity： $50 \mathrm{~mm}^{2} / \mathrm{s}$ or less

[^5]: Note) Value when air pressure is applied.

[^6]: * Refer to Table (1) for available combinations between each electrical option and rated voltage.

[^7]: Note) Please order separately.

