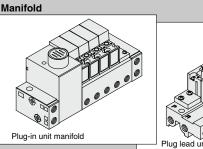
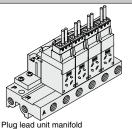
Unprecedented high speed, with stable response times

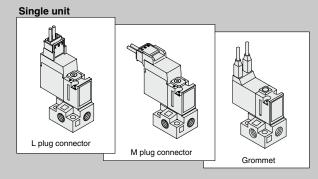
ON: 3.5 ms, OFF: 2 ms, Dispersion accuracy ± 1 ms (With light/surge voltage suppressor; supply pressure 0.5 MPa)

Compact with large flow capacity.

Body width 9.8 mm C: 0.055 dm³/(s·bar) (Standard, high-pressure type) C: 0.14 dm³/(s·bar) (Large flow capacity type) : Semi-standard

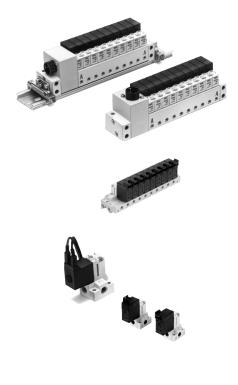

Semi-standard

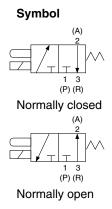

External non-leak Latching type Negative common AC voltage Normally open Vacuum

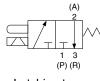

Copper-free specifications

The fluid contacting section is copper-free and the standard type can be used as it is.

A wide variation of wiring


How to Order Valves VQ1 1 0 5 CE/UKCA-compliant Nil VQ series Q CE/UKCA-compliant Compact 3-port valve The 100 VAC, 110 VAC, 24 VDC, and 12 VDC are the only CE/UKCA-compliant products. Actuation 1 Normally closed Made to Order 2*1 Normally open Symbol Specifications *1 Normally open is only selectable for the standard type (1 W). Nil Standard Functions*3 X21 Power saving type (1.5 W) Nil Standard type (1 W) X42 Fluid-contact part: Oil-free Fluororubber н High-pressure type (1.5 W) X113 Low wattage type (0.5 W) γ Latching type* L*2 Port size Positive common Latching type*4 Nil Without sub-plate **N***2 Negative common M3 With sub-plate U*2 Large flow capacity type With sub-plate M5 *2 Semi-standard (It has both + and - polarity.) *3 Only one function can be selected. If the valve is to be energized continuously for extended periods of time, select "Y" Manual override (low-wattage type). For details, refer to Non-locking push type (Tool required) "Extended periods of continuous Nil energization" in the "Selection" section of Latching type: Push-locking type (Tool required) the Best Pneumatics No. 1 catalog. *4 For details on the latching type, refer to **B***5 Locking type (Tool required) *5 Semi-standard the latching type in the "Specific Product Latching manual override: Push-locking type only. Precautions" on page 15. Coil rated voltage CE/UKCA-compliant Electrical entry 1 100 VAC (50/60 Hz) • 2 200 VAC (50/60 Hz) Plua-in F With light/surge voltage suppressor 110 VAC (50/60 Hz) 3 • (only for plug-in manifold) 220 VAC (50/60 Hz) 4 24 VDC 5 6 12 VDC . L plug connector, With lead wire L With light/surge voltage suppressor For other rated voltages, please consult with SMC L plug connector, Without connector LO With light/surge voltage suppressor M plug connector, With lead wire М With light/surge voltage suppressor L plug connector M plug connector, Without connector мо With light/surge voltage suppressor G Grommet


* Grommet: No latching, AC and large flow capacity.


SMC

M plug connector

Latching type

Clean Series

Clean series is available for both standard and option specifications.

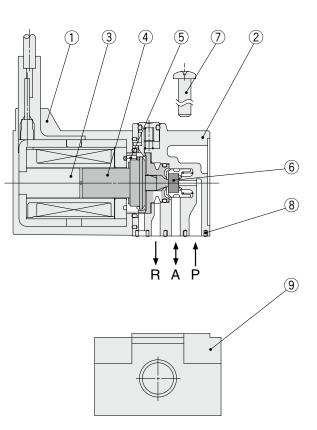
m		Туре	Standard (1 W)	High-pressure (1.5 W)	Low wattage (0.5 W)				
Valve stru	icture		З-ро	ort direct operated po	oppet				
Fluid				Air					
Max. oper	ating p	ressure	0.7 MPa	0.8 MPa	0.7 MPa				
Min. operatir	ng pressu	re (Vacuum)		0 MPa (-0.1 MPa ^{*5}))				
		C [dm³/(s·bar)]	0.0)55	0.042				
	1 ightarrow 2	b	0.	22	0.27				
E Flow rate		Cv	0.0)14	0.011				
characteristics		C [dm³/(s⋅bar)]	0.0)83	0.045				
	$2 \rightarrow 3$	b	0.	28	0.28				
		Cv	0.0	0.012					
Flow rate Cv characteristics $2 \rightarrow 3$ b Response time ^{*1} Ambient and fluid temperatures			ON: 3.5 ms	ON: 3.5 ms, OFF: 2.5 ms					
				-10 to 50°C*2					
Lubricatio	on			Not required					
Manual ov	/erride		Non-locking pus	sh type/Locking type	(Tool required) ^{*3}				
Mounting	operati	on	Free						
Impact/Vib	ration re	esistance*4	150/30 m/s ²						
Enclosure)		Dust-tight						
Weight			12.6 g (L/M µ	12.6 g (L/M plug connector, Without sub-plate)					
Coil rated	voltage	e DC		24 V, 12 V					
Allowable	voltage	fluctuation		±10% of rated voltag	e				
Coil insul	ation ty	ре		Equivalent to class E	3				
Coil rated volt Allowable volta Coil insulation Power consumption Electrical entr		ent) DC	1 W (42 mA)	1.5 W (63 mA)	0.5 W (21 mA)				
Electrical	entry		Grommet Plug-in, L plug connector, M plug connector (With light/surge voltage suppressor)						
	Valve stru Fluid Max. oper Min. operatir Flow rate characteristics Response Ambient an Lubricatic Manual ov Mounting Impact/Vib Enclosure Weight Coil rated Allowable Coil insula	Valve structureFluidMax. operating pMin. operating pressu $I \rightarrow 2$ Flow rate characteristics $2 \rightarrow 3$ Response time*1Ambient and fluid te LubricationManual overrideMounting operatiImpact/Vibration re EnclosureWeightCoil rated voltage Coil insulation ty	Valve structure Fluid Max. operating pressure Min. operating pressure (Vacuum) I 2 b C [dm³/(s·bar)] Plow rate characteristics 2 3 b Cv Response time*1 Ambient and fluid temperatures Lubrication Manual override Mounting operation Impact/Vibration resistance*4 Enclosure Weight Coil rated voltage DC Allowable voltage fluctuation Coil insulation type Power consumption (Current) DC	n rype (1 W) Valve structure 3-pc Fluid Max. operating pressure 0.7 MPa Min. operating pressure (Vacuum) 0.7 MPa Min. operating pressure (Vacuum) 0.7 MPa Min. operating pressure (Vacuum) 0.7 MPa Flow rate $C [dm3/(s-bar)]$ 0.0 characteristics $2 \rightarrow 3$ b 0.0 $2 \rightarrow 3$ b 0.0 0.0 Response time*1 ON: 3.5 ms 0.0 0.0 Response time*1 ON: 3.5 ms 0.0 0.0 Manual override Non-locking pus Mounting operation 0.0 Manual override Non-locking pus Mounting operation 12.6 g (L/M g Coil rated voltage DC 12.6 g (L/M g 12.6 g (L/M g Coil rated voltage fluctuation 3 3 3 Coil insulation type Power consumption (Current) DC 1 W (42 mA) Electrical entry Plug-in, L p Plug-in, L p	m1ype(1 W)(1.5 W)Valve structureSport direct operated porFluidAirMax. operating pressure $0.7 MPa$ $0.8 MPa$ Min. operating pressure (Vacuum) $0 MPa (-0.1 MPa^{*5})$ O.7 MPa $0.8 MPa$ Min. operating pressure (Vacuum) $0 MPa (-0.1 MPa^{*5})$ O.7 MPa $0.8 MPa$ MaxMonet (-0.1 MPa^{*5})0.055C (dm ³ ((s·bar))0.055Cv0.014characteristicsC (dm ³ ((s·bar))0.0832 \rightarrow 3b0.022Cv0.014characteristicsC (dm ³ ((s·bar))0.0832 \rightarrow 3b0.028Cv0.021Response time*1ON: 3.5 ms, OFF: 2 msAmbient and fluid temperatures-10 to $50^{\circ}C^{*2}$ LubricationManual overrideNon-locking push type/Locking typeMounting operationFreeImpact/Vibration resistance*4150/30 m/s ² EnclosureDust-tigh				

- *2 Use dry air to prevent condensation when operating at low temperatures.
- *3 Locking type: Semi-standard
- *4 Impact resistance: No malfunction when tested with a drop tester in the axial direction and at a right angle to the armature, one time each in energized and deenergized states. Vibration resistance: No malfunction when tested with one sweep of 45 to 2000 Hz in the axial direction and at a right angle to the armature, in both energized and deenergized states. (Value in the initial stage)
- *5 For vacuum, please use the 10- clean series. The 3(R) port can be used for vacuum, and the 1(P) port can be used for vacuum release pressure. (For the differential pressure between the 3(R) port and the 1(P) port, use within the max. operating pressure of each type.)
- * For the power-saving type electrical entry, plug-in, L, or M plug connectors are applicable.

It	em		Туре	Latching type	AC type	Large flow capacity type	Normally open type	Power saving type				
	Model			VQ110L-🗆	VQ110-12□	VQ110U-🗆	VQ120-□	VQ110-D-X21				
	Max. oper	rating p	ressure	0.7	MPa	0.6 MPa	0.5 MPa	0.7 MPa				
su	Min. operating pressure				0 MP	°a (–100 kPa	*4, *5)					
Valve specifications			C [dm³/(s·bar)]	0.0	42	0.14	0.04	0.055				
cific		$1 \rightarrow 2^{*6}$ (3 \rightarrow 2)	b	0.:	27	0.26	0.11	0.22				
spe	Flow rate	. ,	Cv	0.0)11	0.036	0.036 0.009 0.014					
ke	characteristics	a a*f	C [dm³/(s·bar)]	0.0	945	0.14	0.044	0.083				
Va		$2 \rightarrow 3^{*6}$ (2 \rightarrow 1)		0.:	28	0.25	0.3	0.28				
		. ,	Cv	0.0)12	0.036	0.011	0.021				
	Response	e time ^{*2}		5 ms or less	15 ms or less	5 ms or less	5 ms or less	5 ms or less				
s			24 VDC	1 W (42 mA)*7		$0.35 \text{ W} (15 \text{ mA})^{*3}$	1 W (42 mA)	0.25 W (11 mA)*8				
tion			12 VDC	1 W (83 mA)*7		0.35 W (30 mA)*3	1 W (83 mA)	0.25 W (21 mA)*8				
ficat	Power consump	tion	100 VAC	0.6 VA (6 mA)	0.5 VA (5 mA)		_					
) eci	(Current)		110 VAC	0.65 VA (5.9 mA)	0.55 VA (5 mA)		_					
al sp			200 VAC	1.2 VA (6 mA)	1.0 VA (5 mA)		_					
tric			220 VAC	1.3 VA (5.9 mA)	1.1 VA (5 mA)		_					
Electrical specifications	Electrical	ectrical entry*1			Plug-in, L plug connector, M plug connector (With light/surge voltage suppressor)							

Semi-standard Specifications

لكم suppressor).


Suppressor).
Only the 1 W DC specification is available for the normally open type.
*2 Based on JIS B 8374-1993. With light/surge voltage suppressor (clean air).
*3 Inrush: 3.1 W (10 ms after energized); Holding: 0.35 W (It has both + and - polarity.)
*4 For vacuum, please use the 10- clean series. The 3(R) port can be used for vacuum, and the 1(P) port can be used for vacuum release pressure. (For the differential pressure between the 3(R) port and the 1(P) port, use within the max. operating pressure of each type.)
If the 1(P) port is to be used for vacuum, and the 3(R) port is to be used for vacuum

release, please select the VQ120 (normally open type). In this case, the 10- is not required.

*6 The values in brackets are for the normally open type's air passage.

*7 It has both + and – polarity.
*8 For the power-saving type electrical entry, plug-in, L, or M plug connectors are applicable.

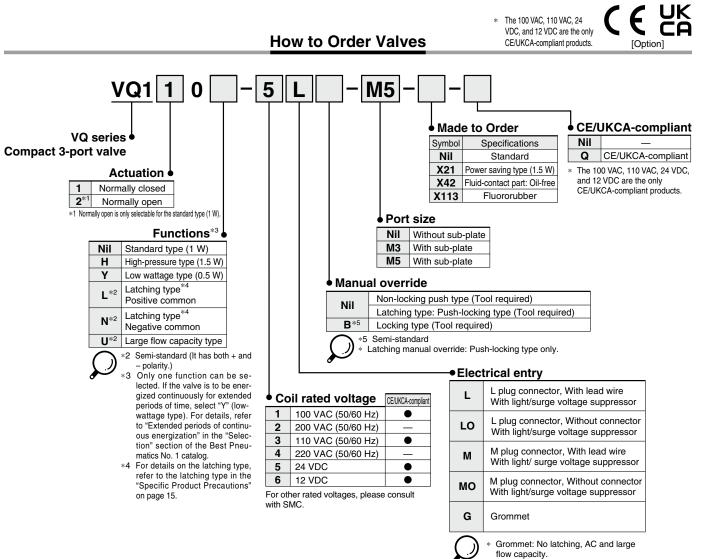
Construction

(The normally closed valve is shown.)

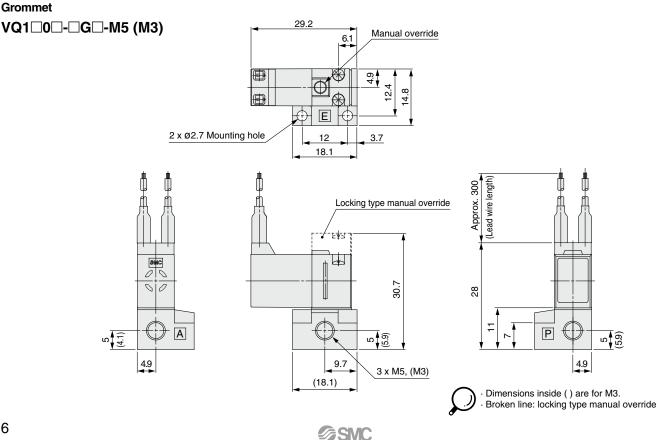
Component Parts

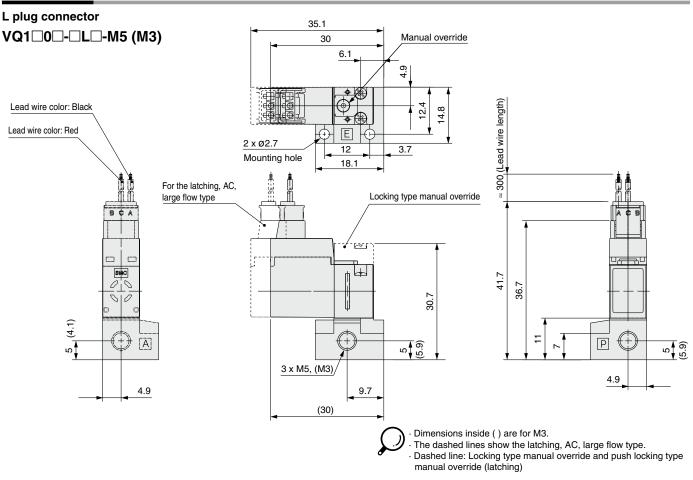
No.	Description	Material
1	Solenoid coil	—
2	Body	Resin
3	Core	Stainless steel
4	Armature assembly	Stainless steel/Resin
5	Return spring	Stainless steel
6	Poppet	NBR
7	Round head combination screw	Carbon steel
8	Interface gasket	FKM

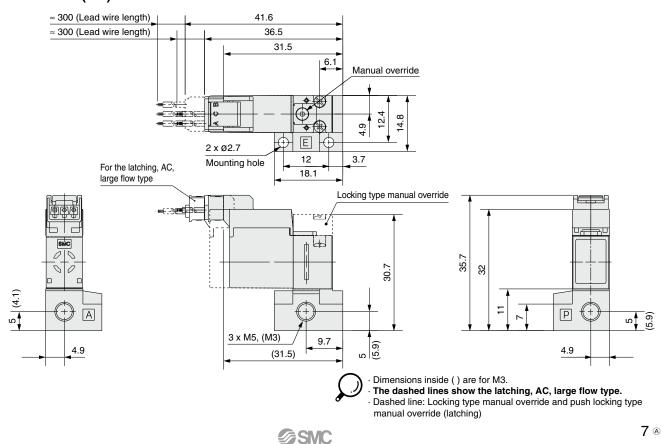
Replacement Parts

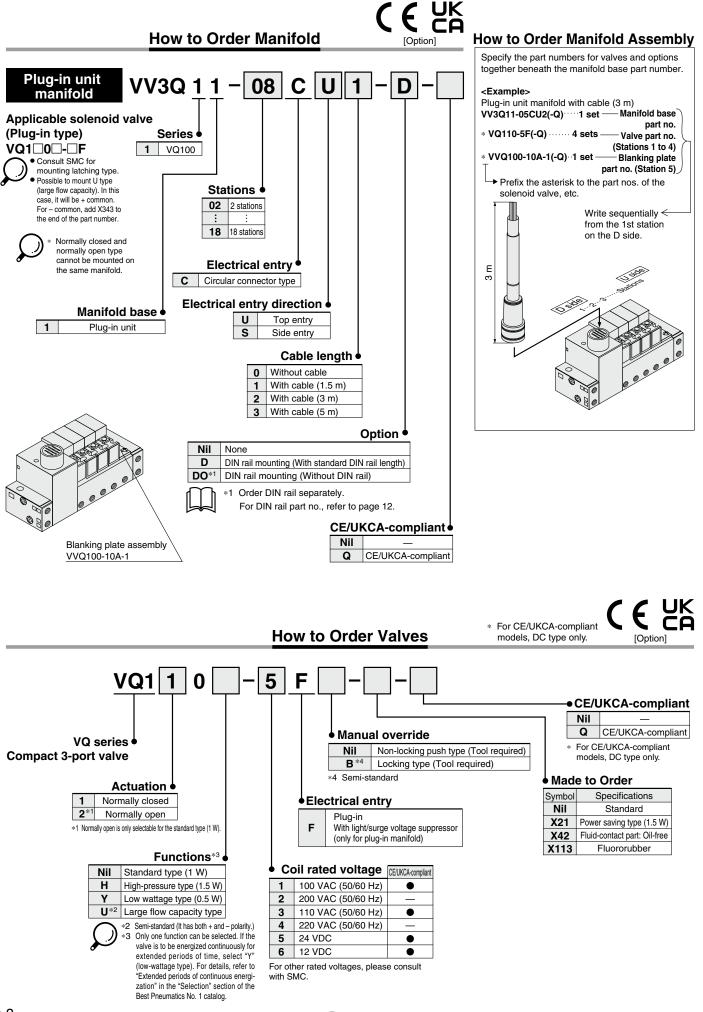

No.	Description	Material	Part no.
9	Sub-plate	ZDC	AXT662-1- ¹ ₂ (1: M5, 2: M3)

Optional Parts


· Gasket and screw: VQ100-GS-5

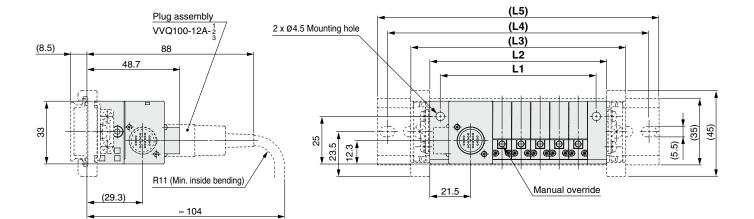

* 1 set includes 1 gasket and 2 screws. An order contains 10 of these sets.

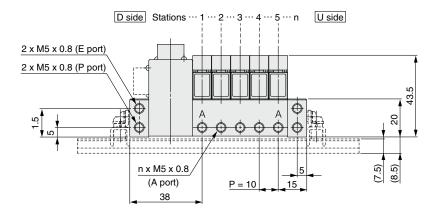

Dimensions



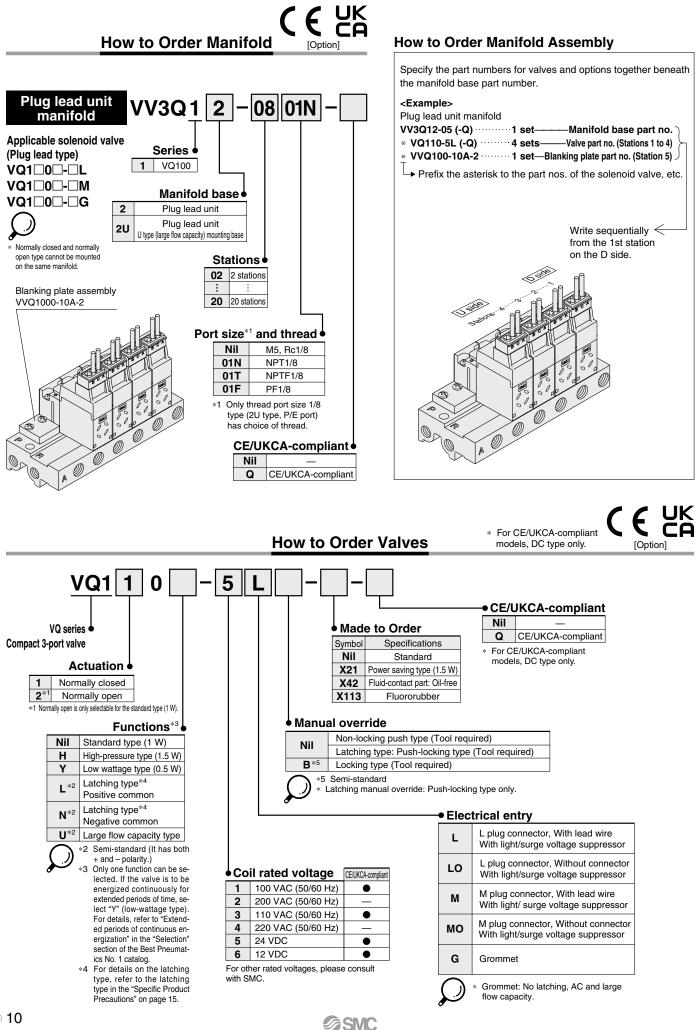
Dimensions

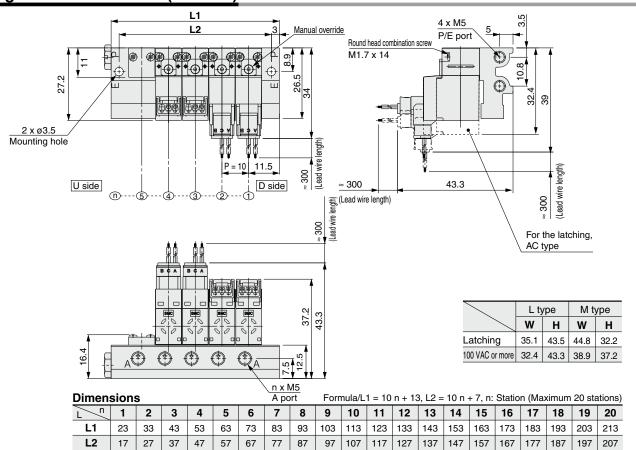
M plug connector VQ1□0-□M□-M5 (M3)

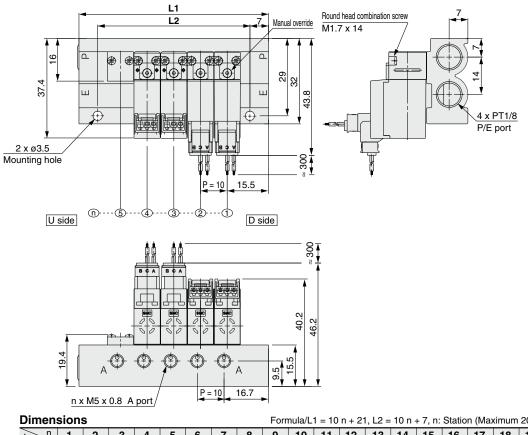


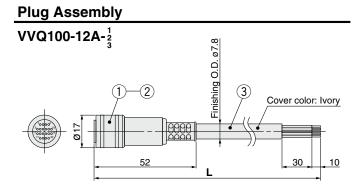


Plug-in Unit (VV3Q11) Manifold with Circular Connector




The broken line indicates DIN rail mounted type (-D) and side entry connector (S).


Dimen	Dimensions										Formula: L1 = 10 n + 32 L2 = 10 n + 43 n: Station (Maximum 18 stations)						8 stations)
L n	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
L1	52	62	72	82	92	102	112	122	132	142	152	162	172	182	192	202	212
L2	63	73	83	93	103	113	123	133	143	153	163	173	183	193	203	213	223
(L3)	83	93	103	113	123	133	143	153	163	173	183	193	203	213	223	233	243
(L4)	112.5	112.5	125	137.5	150	162.5	162.5	175	187.5	200	212.5	212.5	225	237.5	250	262.5	262.5
(L5)	123	123	135.5	148	160.5	173	173	185.5	198	210.5	223	223	235.5	248	260.5	273	273

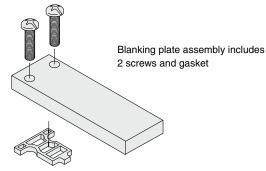

Plug Lead Unit Manifold (VV3Q12)

Plug Lead Unit U Type (Large Flow Capacity) Mounted Manifold (VV3Q12U)

Dimensions Formula/L1 = $10 \text{ n} + 21$, L2 = $10 \text{ n} + 7$, n: Sta										Statio	n (ivia)	kimum	20 Sta	ations)						
L n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
L1	31	41	51	61	71	81	91	101	111	121	131	141	151	161	171	181	191	201	211	221
L2	17	27	37	47	57	67	77	87	97	107	117	127	137	147	157	167	177	187	197	207

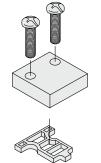
Manifold Option

1	Plug	RP13A-12PS-20SC <made by="" co.,="" electric="" hirose="" ltd.=""></made>				
2	Female contact	RP19-SC-222 <made by="" co.,="" electric="" hirose="" ltd.=""></made>				
3	Vinyl multi-core cable	VVRF 0.2 mm ² 20 cores				


Cable length

Part no.	L Dimension
VVQ100-12A-1	1.5 m
VVQ100-12A-2	3 m
VVQ100-12A-3	5 m

Blanking Plate Assembly


VVQ100-10A-1

Plug-in Unit (VV3Q11) for Manifold with Circular Connector

VVQ100-10A-2

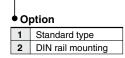
Plug Lead Unit (VV3Q12) for Manifold

Blanking plate assembly includes 2 screws and gasket

VV3Q11 For Manifold with Circular Connector

<D-Side End Plate Assembly>

D-side end plate assembly no.


VVQ100-3A-

Option
 Standard type
 DIN rail mounting

<U-Side End Plate Assembly>

U-side end plate assembly no.

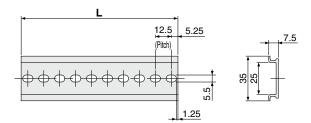
VVQ100-2A-

<DIN Rail Mounting Brackets Assembly>

DIN rail mounting brackets assembly no.

Mounting direction

D side mountingU side mounting



The number of manifold stations cannot be changed.

When Ordering DIN Rail Only

DIN rail no: AXT100-DR-

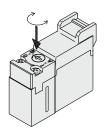
* As for _, enter the number from the DIN rail dimensions table. For L dimension, refer to the dimensions on page 9.

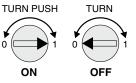
L Dimen	L Dimension L = 12.5 n + 10.5												
No.	1	2	3	4	5	6	7	8	9	10			
L Dimension	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5			
No.	11	12	13	14	15	16	17	18	19	20			
L Dimension	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5			
No.	21	22	23	24	25	26	27	28	29	30			
L Dimension	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5			
No.	31	32	33	34	35	36	37	38	39	40			
L Dimension	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5			


Be sure to read this before handling the products.

Refer to the "Handling Precautions for SMC Products" (M-E03-3) for safety instructions and solenoid valve precautions.

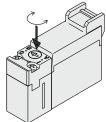
Manual Override

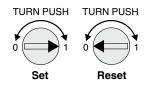

Connected actuator is started by manual operation. Use the manual override after confirming that there is no danger.


Non-locking push type (Tool required)

It is turned ON by pushing the button in the direction indicated by the arrow until it hits the end and turned OFF by releasing the button.

■ Locking type (Tool required) <Semi-standard>




 It can be locked in the ON state by turning the manual override to the right, setting the
 mark to 1 and pushing it.

 It can be unlocked by turning the manual override to the left, setting the ◀ mark to 0 and pushing it, and the manual returns.

* Make sure the locking type manual override is unlocked before use.

■ Push-locking type (Tool required) <Latching type>

It can be locked in the set state (flow: P → A) by turning the manual override to the right, setting the ▶ mark to 1 and pushing it.

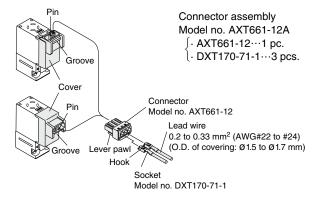
It can be turned back to the reset state (flow: $A \rightarrow R$) by turning the manual override to the left, setting the \blacktriangleleft mark to 0 and pushing it. (It is set in reset state when shipped.)

Caution When operating the locking type manual override with a screwdriver, turn it gently using a watchmakers screw driver.

[Torque: Less than 0.1 N·m]

For the locking type, be sure to completely turn the manual override before pressing it. (Pressing the manual override while turning it will damage the manual override button.)

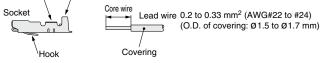
Mounting


To mount the valve, check the condition of the body interface gasket and then tighten it uniformly to the appropriate tightening torque (0.15 to 0.18 N·m).

▲ Caution

How to Use Plug Connector

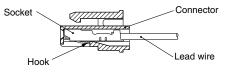
Attaching and detaching connectors


- •To attach a connector, hold the lever and connector unit between your fingers and insert straight onto the pins of the solenoid valve so that the lever's pawl is pushed into the groove and locks.
- To detach a connector, remove the pawl from the groove by pushing the lever downward with your thumb, and pull the connector straight out.
- * Gently pull the lead wire, otherwise it may cause contact failure or disconnection.

Crimping connection of lead wire and socket

Strip 3.2 to 3.7 mm at the end of lead wires, insert the end of the core wires evenly into the sockets, and then crimp it by a crimping tool. When this is done, take care that the coverings of the lead wires do not enter the core wire crimping area. (Crimping tool: Model no. DXT170-75-1)

Core wire crimping area / Covering retainer


Attaching and detaching lead wires with sockets

Attaching

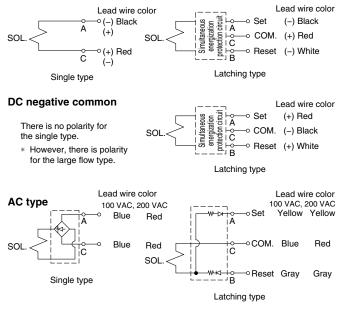
Insert the sockets into the square holes of the connector (A, C, B indication), and continue to push the sockets all the way in until they lock by hooking into the seats in the connector. (When they are pushed in, their hooks open and they are locked automatically.) Then confirm that they are locked by pulling lightly on the lead wires.

Detaching

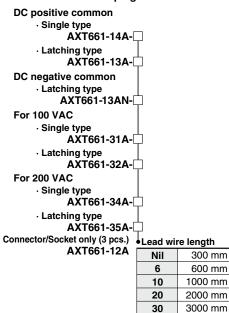
To detach a socket from a connector, pull out the lead wire while pressing the socket's hook with a stick having a thin tip (approx. 1 mm). If the socket will be used again, first spread the hook outward.

Be sure to read this before handling the products.

Refer to the "Handling Precautions for SMC Products" (M-E03-3) for safety instructions and solenoid valve precautions.


A Caution

How to Use Plug Connector

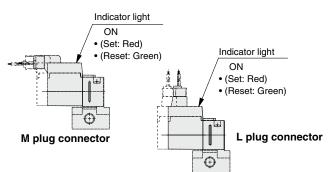

Wiring Specifications

•Wiring should be connected as shown below. Connect with the power supply respectively.

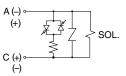
DC positive common

How to Order valve plug connector assembly

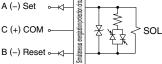
Plug connector lead wire length

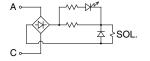

The lead wire length of the valves with lead wire is 300 mm. When ordering a lead wire length of 600 mm or longer, list the part numbers for the valve without connector and the connector assembly.

▲ Caution

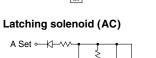

Light/Surge Voltage Suppressor

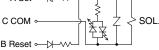
In the latching type, the set side and the reset side energization are indicated by two colors – red and green.


* () and the dotted lines indicate the latching and large flow type.


Single solenoid (DC)

Latching solenoid (DC)




Single solenoid (AC) Latching s

Single: No polarity

ON: Red light lights.
Setting side energizing: Red light lights.
Resetting side energizing: Green light lights.
With wrong wiring prevention (stop diode) mechanism
With surge voltage suppresser (ZNR/Surge absorbing diode)

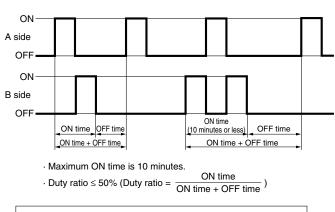
* A (set) side energizing: $\mathsf{P}\to\mathsf{A}$

B (set) side energizing: A → R
 * Negative common specification is applicable.

SMC

Be sure to read this before handling the products.

Refer to the "Handling Precautions for SMC Products" (M-E03-3) for safety instructions and solenoid valve precautions.


Caution

The latching solenoid is equipped with a self-holding mechanism which permits the movable iron core in the solenoid to hold the set position or reset position during momentary energization (20 ms or longer), so there is no need for continuous energization. Depending on conditions, continuous energization may cause a rise in the coil temperatures, resulting in a malfunction.

<Special precautions to be taken with the latching type>

 Do not continuously energize the latching type. When it is necessary to energize it continuously, keep the energized period to 10 minutes or less, and then leave a de-energized period (on both the A side and B side) lasting longer than the energized period,

before operating it again. The duty ratio should be 50% or less.

Example: When energization lasts for five minutes, it should be followed by five or more minutes of de-energization. Because the latching type has only one solenoid, both the A side and B side should be off for five minutes or more.

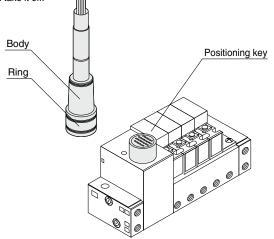
However, a minimum energization time of 20 ms is recommended. [Ambient temperature]

The product should be installed in an environment with an ambient temperature of -10° C to 50° C. Especially in environments with poor heat dissipation, such as in a panel, the heat of the coil can cause the ambient temperature to rise, so please exercise caution.

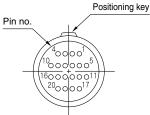
- 2. Use a circuit in which the set and reset signals will not be energized at the same time.
- 3. The minimum energization time for self-holding is 20 ms.
- Even when there is no problem with normal operations and locations, please consult with SMC before using in locations with a vibration of 30 m/s² or more or a strong magnetic field.
- 5. Even though this valve is set to the reset position at the time of shipment (passage: $A \rightarrow R$), it may switch to the set position during transportation or due to impact when mounting valves, etc. Therefore, check the initial position with the power supply or by performing a manual override prior to use.

Latching	Passage	Indicator light		Single	Passage	Indicator light
A-C	$P \rightarrow A$	Red		A-C ON	$P\toA$	Red
ON (set) B-C				OFF	$A\toR$	—
ON (reset)	$A \rightarrow R$	Green				

Be sure to read this before handling the products.


Refer to the "Handling Precautions for SMC Products" (M-E03-3) for safety instructions and solenoid valve precautions.

∧ Caution


How to Use of Circular Connector (For plug-in manifold: For VV3Q11)

1. Attaching and detaching connectors

- To attach a connector, align the positioning key grooves of the body to the key, and it is locked.
- To detach the connector, pull the ring section straight back, and it is unlocked and then take it off.

2. Wiring Specifications

Э.

Terminal no.

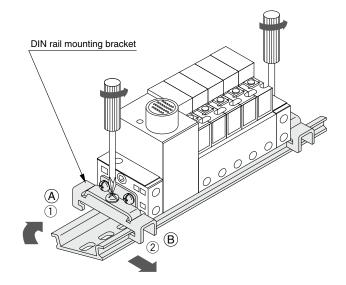
Circular connector pin arrangement

1 stationSOL.Pin no.2 stationsSOL.23 stationsSOL.23 stationsSOL.34 stationsSOL.45 stationsSOL.67 stationsSOL.78 stationsSOL.78 stationsSOL.79 stationsSOL.910 stationsSOL.1011 stationsSOL.1112 stationsSOL.1113 stationsSOL.1213 stationsSOL.1314 stationsSOL.1516 stationsSOL.1617 stationsSOL.1718 stationsSOL.18COM19COM20				
2 stations 3 stations 4 stations 5 stations 6 stations 9 stations 10 stations 11 stations 12 stations 14 stations 15 stations 15 stations 10 stations 14 stations 17 stations 16 stations 17 stations 17 stations 17 stations 18 stations 17 stations 18 stations 10 stations 10 stations 10 stations 10 stations 11 stations 12 stations 13 stations 14 stations 17 stations 17 stations 17 stations 18 stations 10 stations 10 stations 10 stations 11 stations 12 stations 13 stations 14 stations 17 stations 17 stations 18 stations 10 stations 10 stations 11 stations 12 stations 13 stations 14 stations 15 stations 16 stations 17 stations 18 stations 18 stations 10 stations 10 stations 10 stations 11 stations 12 stations 13 stations 14 stations 15 stations 16 stations 17 stations 18 stations 10 stations	1 station		SOL.	Pin no
2 stations 3 stations 4 stations 5 stations 6 stations 9 stations 10 stations 11 stations 12 stations 14 stations 15 stations 16 stations 10 stations 11 stations 11 stations 12 stations 13 stations 14 stations 17 stations 16 stations 17 stations 17 stations 10 stations 10 stations 11 stations 12 stations 13 stations 14 stations 17 stations 17 stations 17 stations 18 stations 17 stations 10 stations 10 stations 11 stations 11 stations 12 stations 13 stations 14 stations 17 stations 17 stations 18 stations 18 stations 10 stations 10 stations 11 stations 12 stations 13 stations 14 stations 15 stations 16 stations 17 stations 18 stations 18 stations 10 stations 10 stations 10 stations 10 stations 11 stations 12 stations 13 stations 14 stations 15 stations 16 stations 17 stations 18 stations 10 stations		\square^{\vee}	SOL.	
3 stations SOL 3 4 stations SOL 4 5 stations SOL 5 6 stations SOL 6 7 stations SOL 7 8 stations SOL 7 9 stations SOL 9 10 stations SOL 10 11 stations SOL 11 12 stations SOL 12 13 stations SOL 12 14 stations SOL 15 15 stations SOL 15 16 stations SOL 17 18 stations SOL 18 COM 19 COM		\square		-02
4 stations SOL. 5 5 stations SOL. 5 6 stations SOL. 6 7 stations SOL. 7 8 stations SOL. 9 10 stations SOL. 10 11 stations SOL. 11 12 stations SOL. 12 13 stations SOL. 13 14 stations SOL. 15 16 stations SOL. 16 17 stations SOL. 17 18 stations SOL. 18 COM 19 COM	3 stations	\vdash \lor	001	-03
S stations SOL. 6 6 stations SOL. 6 7 stations SOL. 7 8 stations SOL. 9 9 stations SOL. 9 10 stations SOL. 10 11 stations SOL. 11 12 stations SOL. 13 13 stations SOL. 13 14 stations SOL. 15 16 stations SOL. 16 7 stations SOL. 17 18 stations SOL. 18 COM 19 COM	4 stations	$\vdash \land$	SOL.	-04
5 stations Sol. 7 7 stations Sol. 7 8 stations Sol. 9 9 stations Sol. 9 10 stations Sol. 10 11 stations Sol. 11 12 stations Sol. 12 13 stations Sol. 13 14 stations Sol. 15 15 stations Sol. 15 16 stations Sol. 17 18 stations Sol. 18 COM 19 COM	5 stations	$\square \land$	SOL.	-05
7 stations SOL. 9 8 stations SOL. 9 10 stations SOL. 10 11 stations SOL. 10 11 stations SOL. 11 12 stations SOL. 12 13 stations SOL. 13 14 stations SOL. 14 15 stations SOL. 15 16 stations SOL. 17 18 stations SOL. 18 COM 19	6 stations	$\square \land \checkmark$	SOL.	-06
8 stations SOL. 9 9 stations SOL. 9 10 stations SOL. 10 11 stations SOL. 11 12 stations SOL. 12 13 stations SOL. 13 14 stations SOL. 14 15 stations SOL. 15 16 stations SOL. 17 18 stations SOL. 18 COM 19 COM	7 stations	$\square \land \checkmark$	SOL.	-07
9 stations 9 stations 10 stations 11 stations 12 stations 14 stations 15 stations 17 stations 18 stations 10 stations 10 stations 10 stations 10 stations 11 stations 12 stations 13 stations 14 stations 15 stations 17 stations 18 stations 10 stations 10 stations 10 stations 10 stations 10 stations 10 stations 11 stations 12 stations 13 stations 14 stations 15 stations 17 stations 18 stations 10 stations 10 stations 10 stations 10 stations 10 stations 10 stations 10 stations 10 stations 11 stations 12 stations 13 stations 14 stations 15 stations 18 stations 10 stat	8 stations	$\square ^{\vee}$	SOL.	-0.8
10 stations 10 stations 11 stations 12 stations 13 stations 14 stations 15 stations 17 stations 18 stations 10 stations 10 stations 10 stations 10 stations 10 stations 10 stations 10 stations 10 stations 11 stations 12 stations 13 stations 14 stations 15 stations 17 stations 18 stations 19 stations 10 stations 11 stations 10 st	0		SOL.	
11 stations SOL. 0 11 12 stations SOL. 0 12 13 stations SOL. 0 13 14 stations SOL. 0 14 15 stations SOL. 0 15 16 stations SOL. 0 16 17 stations SOL. 0 17 18 stations SOL. 0 18 COM 0 19 COM	0	\square^{\vee}	SOL.	0.0
11 stations 0 11 12 stations SOL. 12 13 stations SOL. 13 14 stations SOL. 14 15 stations SOL. 15 16 stations SOL. 16 17 stations SOL. 17 18 stations SOL. 18 COM 19 COM		\square	SOL.	
12 stations SOL. 12 13 stations SOL. 13 14 stations SOL. 14 15 stations SOL. 15 16 stations SOL. 16 17 stations SOL. 17 18 stations SOL. 18 COM 19 COM		\vdash		-0 11
13 stations SOL. 13 14 stations SOL. 14 15 stations SOL. 15 16 stations SOL. 16 17 stations SOL. 17 18 stations SOL. 18 COM 19 COM	12 stations	$\vdash \sim$		-0 12
14 stations SOL. 14 15 stations SOL. 15 16 stations SOL. 16 17 stations SOL. 17 18 stations SOL. 18 COM 19 COM	13 stations	└ <u></u> `,	SOL.	-0 13
15 stations SOL. 15 16 stations SOL. 16 17 stations SOL. 17 18 stations SOL. 18 COM 19 COM	14 stations		SOL.	-0 14
17 stations 18 stations SOL. 0 17 18 stations COM 0 19 COM 0 19	15 stations	$\square \land \checkmark$	SOL.	-0 15
17 stations 18 stations SOL. 018 COM 019 COM	16 stations	$\square \land$	SOL.	-0 16
18 stations SOL. 0 18 COM 0 19	17 stations	$\square ^{\vee}$	SOL.	-0.17
<u>COM</u> 0 19	10 stations		SOL.	
COM COM	10 0101010	\square \checkmark	СОМ	
O 20				-0 19
		L	00101	-0 20

1	Black	—
2	Brown	
3	Red	—
4	Orange	_
5	Yellow	
6	Pink	—
7	Blue	—
8	Violet	White
9	Gray	Black
10	White	Black
11	White	Red
12	Yellow	Red
13	Orange	Red
14	Yellow	Black
15	Pink	Black
16	Blue	White
17	Violet	
18	Gray	
19	Orange	Black
20	Red	White

Terminal no./Lead wire color

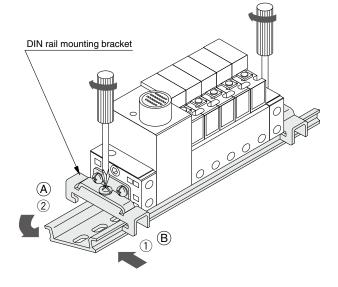
Lead wire color


Wire color Dot marking

∧ Caution

How to Connect/Disconnect DIN Rail

Removing

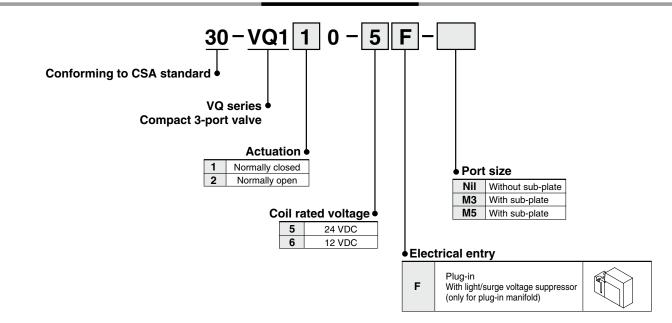

- 1) Loosen the clamp screw of the end plate on both sides.
- 2) Lift side (A) of the manifold base and slide the end plate in the direction of ② shown in the figure to remove.

Mounting

- 1) Hook side (B) of the manifold base on the DIN rail.
- 2) Press down side (A) and mount the end plate on the DIN rail. Tighten the clamp screw on the side.

Proper tightening torque of thread: 0.8 to 1.2 N·m

How to Calculate the Flow Rate


SMC

For obtaining the flow rate, refer to the Best Pneumatics No. 1

Electrical wiring specifications

How to Order Valves

Function: Standard (1 W) Manual override: Non-locking push type (Tool required) Latching type: Push-locking type (Tool required)

Refer to standard products for specifications and dimensions.