

Series Variations

Series	Bore size (mm)	Standard stroke (mm)	Action	Rod	Mounting	Built-in magnet for auto switch	Rubber bumper	Auto switch		
	20	25 to 200								
CG3	25 to 63	05 to 000	Double acting		Basic, Foot, Flange, Clevis	•	•	D-M9□(W), D-A90		
	80, 100	25 to 300						D-G5□(W), D-K59(W), D-B64		

* For the trunnion type, please contact SMC sales representatives.

Air Cylinder Short Type Standard: Double Acting, Single Rod CG3 Series RoHS ø20, ø25, ø32, ø40, ø50, ø63, ø80, ø100

Applicable Auto Switches/Refer to pages 1271 to 1365 for further information on auto switches.

			ght			oad volta	a 0		uto switch mod		1.02	d wir	e ler	ath	(m)			
Туре		Electrical	- E	Wiring			ye	Ap	plicable bore s	ize	Lea	u wii	e iei	iyiii	(iii)	Pre-wired	Applica	ble load
Type	function	entry	Indicator light	(Output)	- -	C	AC	ø20 to		ø80, ø100	0.5	1	3	5	None	connector	Applica	Die Ioau
			Ĕ		5	0	70	Perpendicular	In-line	In-line	(Nil)	(M)	(L)	(Z)	(N)			
				3-wire (NPN)				M9NV	M9N	—	۲	•	•	0	-	0		
				3-wile (141 14)		5 V, 12 V		-	_	G59	۲	-	•	0	-	0	IC	
		Grommet		3-wire (PNP)		5 V, 12 V		M9PV	M9P	—	۲	•	•	0	-	0	circuit	
		Cironnie		5-wile (1 wil)				-	—	G5P	•	-	•	0	-	0		
<u>ج</u>								M9BV	M9B	-	•	•	•	0	-	0		
Ĕ				2-wire		12 V		-	—	K59	•	-	•	0	-	0	- 1	
switch		Connector	1					_	H7C	—	•	-	•	•	•	—		
2			1	3-wire (NPN)			1	M9NWV	M9NW	—	•	•	•	0	-	0		
auto	Diagnostic		Yes	3-wire (INPIN)	24 V	- 11 40.14		_	_	G59W	•	-	•	0	-	0	IC	Relay,
e	indication		⊬	Quuine (DND)	24 V	5 V, 12 V	-	M9PWV	M9PW	—	•	•	•	0	-	0	circuit	PLC
tal	(2-color			3-wire (PNP)				_	_	G5PW	•	-	•	0	-	0	1	
Solid state	indicator)			2-wire		12 V	1	M9BWV	M9BW	—	•	•	•	0	-	0		
i ∺	, ,	Grommet		2-wire		12 V		_	_	K59W	•	-	•	0	-	0	_	
ŭ				3-wire (NPN)		- 11 40.14	1	M9NAV*1	M9NA*1	—	0	0	•	0	-	0	IC	
	Water resistant			3-wire (PNP)		5 V, 12 V		M9PAV*1	M9PA*1	_	Ō	Ō	۲	Ō	-	Õ	circuit	
	(2-color indicator)			Quality			1	M9BAV*1	M9BA*1	_	Ō	Ō	۲	Ō	-	Õ		
				2-wire		12 V		_	_	G5BA*1	-	-	۲	Ō	-	Õ	_	
	With diagnostic output (2-color indicator)			4-wire (NPN)		5 V, 12 V	1	_	H7NF	G59F	۲	-	۲	Ō	-	Õ	IC circuit	
-			ŝ	3-wire (NPN equivalent)	-	5 V	-	A96V	A96	_	۲	-	۲	-	-	_	IC circuit	-
5			Yes				100 V	A93V*2	A93	—	•	•	•	•	-	—	-	
Ň		Grommet	Å	1			100 V or less	A90V	A90	—	•	-	•	-	-	—	IC circuit	
ő			\$	1		10.11	100 V, 200 V	_	B	54	•	-	•	•	-	—		Delevi
auto switch			No Yes No	2-wire	24 V	12 V	200 V or less	_	B	64	۲	—	۲	-	-	_	1 —	Relay,
9		Connector	8	1			-	_	C73C	_	۲	—	۲	•	•	_	1	PLC
Reed		Connector	ž	1			24 V or less	_	C80C	—	۲	—	۲	Ô	•	_	IC circuit	
č	Diagnostic indication (2-color indicator)	Grommet	۶ų	1		-	-	_		9W	۲	—	۲	-	-	_		

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.

A water resistant type cylinder is recommended for use in an environment which requires water resistance. However, please contact SMC for water-resistant products of ø20 and ø25. *2 1 m type lead wire is only applicable to D-A93

* Lead wire length symbols: 0.5 m Nil (Example) M9NW

* Solid state auto switches marked with "O" are produced upon receipt of order. * The D-G5□/K5□/B5□/B6□ types cannot be mounted on the bore size ø40.

refer to the below table.

1 m М (Example) M9NWM ... L (Example) M9NWL

- 3 m· 5 m·
 - (Example) M9NWZ

None .. N (Example) H7CN

* Since there are other applicable auto switches than listed above, refer to page 464 for details

* For details about auto switches with pre-wired connector, refer to pages 1340 and 1341

* The D-A9□(V)/M9□V(V)/M9□W(V)/M9□A(V) type auto switches are shipped together, (but not assembled). (However, auto switch mounting brackets are assembled when being shipped.)

Symbol

Rubber bumper

Refer to pages 461 to 464 for cylinders with auto switches.

- · Auto switch proper mounting position (detection at stroke end) and its mounting height
- · Minimum stroke for auto switch mounting Operating range
- · Auto switch mounting brackets/Part no.

	Made to Order Click here for details					
Symbol	Symbol Specification					
-XA Change of rod end shape						

Specifications

Bore si	ze (mm)	20	25	32	40	50	63	80	100			
Action				Doul	ole actin	g, Single	e rod					
Lubrication		Not required (Non-lube)										
Fluid		Air										
Proof pressur	e	1.0 MPa										
Maximum ope	rating pressure				0.7	MPa						
Minimum ope	rating pressure	0.05 MPa										
Ambient and fl	uid temperature	Without auto switch: -10 to 70°C (No freezing)										
Ambient and h	ulu temperature	With auto switch: -10 to 60°C (No freezing)										
Piston speed		50 to 1000 mm/s 30 to 700 mm/s										
Stroke length	tolerance				+ 1.4	mm						
Cushion					Rubber	bumper						
Mounting		E	Basic, Fo	ot, Rod	flange, I	lead fla	nge, Cle	vis				
Allowable	Male rod end	0.2 J	0.29 J	0.46 J	0.84 J	1.4 J	2.38 J	4.13 J	6.93 J			
kinetic energy	Female rod end	0.29 J	0.52 J	0.91 J	1.54 J	2.71 J	4.54 J					
Operate the out	lindor within tho al	lowoble I	dinatia an		for to po	-	vr dotoilo					

* Operate the cylinder within the allowable kinetic energy. Refer to page 456 for details.

Standard Strokes

Bore size (mm)	Standard stroke (mm) Note)
20	25, 50, 75, 100, 125, 150, 200
25	
32	
40	
50	25, 50, 75, 100, 125, 150, 200, 250, 300
63	
80	
100	

Note) Manufacture of intermediate strokes in 1 mm increments is possible. (Spacers are not used.)

Accessories

	Mounting	Basic	Foot	Rod flange	Head flange	Clevis
Standard	Rod end nut (male thread)	•	•	•	•	•
Standard	Clevis pin	—	—	—	—	•
	Single knuckle joint	•	•	•	•	•
Option	Double knuckle joint (with pin) *	•	•	•	•	•
	Pivoting bracket	—	_	_	—	•

* A double knuckle joint pin and retaining rings are shipped together. * For part numbers and dimensions, refer to page 460.

Mounting Brackets/Part No.

Mounting	Order				Bore siz	ze (mm)				Contents
bracket	qty.	20	25	32	40	50	63	80	100	Contents
Foot	Note) 2	CG-L020	CG-L025	CG-L032	CG3-L040	CG-L050	CG-L063	CG-L080	CG-L100	2 foots, 8 mounting bolts
Flange	1	CG3-F020	CG3-F025	CG-F032	CG3-F040	CG-F050	CG-F063	CG-F080	CG-F100	1 flange, 4 mounting bolts
Clevis	1	CG-D020	CG-D025	CG-D032	CG3-D040	CG-D050	CG-D063	CG-D080	CG-D100	1 clevis, 4 mounting bolts, 1 clevis pin, 2 retaining rings
Pivoting bracket	1	CG-020- 24A	CG-025- 24A	CG-032- 24A	CG-040- 24A	CG-050- 24A	CG-063- 24A	CG-080- 24A	CG-100- 24A	1 pivoting bracket

Note) Order 2 foots per cylinder.

Air Cylinder Short Type Standard: Double Acting, Single Rod CG3 Series

Theoretical Output

									Unit: N
Bore size	Rod size	Operating	Piston area			Operating pr	essure (MPa)		
D (mm)	d (mm)	direction	(mm ²)	0.2	0.3	0.4	0.5	0.6	0.7
	0	OUT	314	62.8	94.2	125.6	157	188.4	219.8
20	8	IN	264	52.8	79.2	105.6	132	158.4	184.8
25	10	OUT	491	98.2	147.3	196.4	245.5	294.6	343.7
25	10	IN	412	82.4	123.6	164.8	206	247.2	288.4
32	12	OUT	804	160.8	241.2	321.6	402	482.4	562.8
32	12	IN	691	138.2	207.3	276.4	345.5	414.6	483.7
40	14	OUT	1257	251.4	377.1	502.8	628.5	754.2	879.9
40	14	IN	1103	220.6	330.9	441.2	551.5	661.8	772.1
50	18	OUT	1964	392.8	589.2	785.6	982	1178.4	1374.8
50	10	IN	1709	341.8	512.7	683.6	854.5	1025.4	1196.3
63	18	OUT	3117	623.4	935.1	1246.8	1558.5	1870.2	2181.9
03	10	IN	2863	572.6	858.9	1145.2	1431.5	1717.8	2004.1
80	22	OUT	5027	1005.4	1508.1	2010.8	2513.5	3016.2	3518.9
00	22	IN	4646	929.2	1393.8	1858.4	2323	2787.6	3252.2
100	26	OUT	7854	1570.8	2356.2	3141.6	3927	4712.4	5497.8
100	20	IN	7323	1464.6	2196.9	2929.2	3661.5	4393.8	5126.1

Weights

									(kg)
Bo	ore size (mm)	20	25	32	40	50	63	80	100
Basic		0.09	0.14	0.20	0.32	0.66	0.92	1.75	2.74
weight	Long male rod end (G)	0.10	0.15	0.21	0.34	0.70	0.97	1.84	2.85
weight	Female rod end (F)	0.08	0.12	0.19	0.29	0.60	0.85	1.61	2.53
Additional	Foot	0.11	0.13	0.16	0.22	0.48	0.72	0.96	1.75
weight for	Flange	0.08	0.10	0.14	0.20	0.34	0.50	0.71	1.35
bracket	Clevis	0.05	0.08	0.15	0.23	0.40	0.68	0.71	1.28
Pivoting brac	ket	0.08	0.09	0.17	0.25	0.44	0.80	0.98	1.75
Single knuck	le joint	0.05	0.09	0.09	0.10	0.22	0.22	0.39	0.57
Double knuck	de joint (with pin)	0.05	0.09	0.09	0.13	0.26	0.26	0.64	1.31
Additional we	Additional weight per 50 mm of stroke		0.07	0.09	0.13	0.19	0.23	0.31	0.43
Additional we	Additional weight for switch magnet		0.01	0.01	0.01	0.01	0.02	0.02	0.04

Calculation: (Example) CDG3FN20-100 (Built-in magnet, Flange type, ø20, 100 mm stroke)

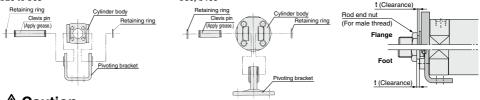
Additional weight for bracket 0.08 (Flange)

Additional weight for stroke 0.05/50 mm

Air cylinder stroke 100 mm

Additional weight for switch magnet ···· 0.01

0.09 + 0.08 + 0.05 x (100/50) + 0.01 = 0.28 kg


Mounting Procedure

Mounting procedure for clevis

Follow the procedures below when mounting a pivoting bracket on the clevis type.

ø20 to ø63

≜Caution

1. Tighten clevis bracket mounting bolts with the following proper tightening torque. \emptyset 20: 1.5 N·m, \emptyset 25 to \emptyset 32: 2.9 N·m, \emptyset 40: 4.9 N·m

ø50: 11.8 N·m, ø63 to ø80: 24.5 N·m, ø100: 42.2 N·m

- 2. For the flange type and the foot type, mount the rod end nut so that distance t (clearance) will be 1 mm or more in order to prevent interference of the nut with the bracket when the rod is retracted.
- 3. The rod end nut (for male thread) should be mounted so that the hexagon part is on the rod end side. Apply the wrench to the hexagon part.

Mounting procedure for rod end nut

Basic weight 0.09 (Basic type, ø20)

Allowable Kinetic Energy

Table (1) Max	c. All	ował	ole K	ineti	c Ene	ergy		[J]
Bore size (mm)								100
Male rod end	0.2	0.29	0.46	0.84	1.4	2.38	4.13	6.93
Female rod end	0.11	0.18	0.29	0.52	0.91	1.54	2.71	4.54

Kinatia anarau E (I)	(m1 + m2) V2	m1: Mass of cylinder movable parts	s kg
Kinetic energy E (J) =	2	m2: Load mass	kg
	-	V . Dicton croad at the and	mlo

V : Piston speed at the end m/s

Table (2) Mass of Cylinder Movable Parts: At Each Rod End/Without Built-in Magnet/0 Stroke [g]

Bore size (mm)	20	25	32	40	50	63	80	100
Basic	30	54	74	121	254	297	603	935
Long male rod end (G)	36	64	89	146	300	343	683	1047
Female rod end (F)	23	40	62	91	184	226	462	728

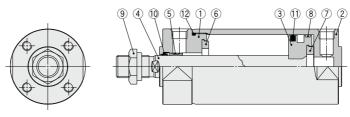
* Mass of the rod end nut is included for the basic type and the long male rod end type (G).

Table (3) Additional Mass

								191
Bore size (mm)	20	25	32	40	50	63	80	100
Additional mass per 50 mm of stroke	20	31	44	61	99	99	148	207
Switch magnet	4	4	9	13	14	22	24	35

 \ast Do not apply a lateral load over the allowable range to the rod end when it is mounted horizontally.

Calculation: (Example) CDG3BN40-150

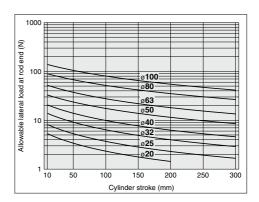

Switch magnet

..... 13 g Total 317 g

[a]

Construction

With rubber bumper


Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Hard anodized
2	Tube cover	Aluminum alloy	Hard anodized
3	Piston	Aluminum alloy	Chromated
4	Piston rod	Carbon steel*	Hard chrome plated*
5	Bushing	Bearing alloy	
6	Bumper A	Resin	
7	Bumper B	Resin	
8	Wear ring	Resin	
9	Rod end nut	Carbon steel	Nickel plated
10	Rod seal	NBR	
11	Piston seal	NBR	
12	Tube gasket	NBR	

Note) In the case of cylinders with auto switches, magnets are installed in the piston.

* The material for ø20 and ø25 cylinders with auto switches is made of stainless steel.

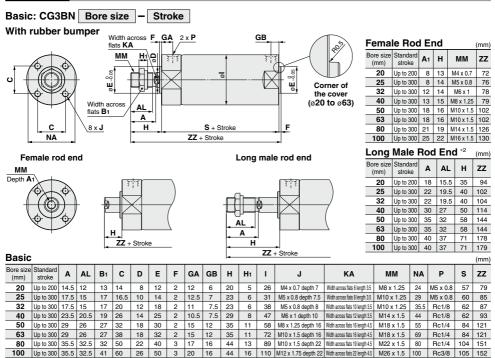
Allowable Lateral Load at Rod End

Replacement Parts/Seal Kit

Bore size (mm)	Kit no.	Contents
20	CG3N20-PS	0-1
25	CG3N25-PS	Set of the nos.
32	CG3N32-PS	10, 11, 12
40	CG3N40-PS	C

Note) As sizes ø50 and larger cannot be disassembled, the seal cannot be replaced.

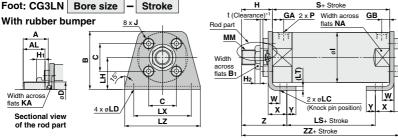
Note) Refer to the following for disassembly/ replacement. Order with a part number for each type and bore size.


* The seal kit includes a grease pack (10 g).

Order with the following part number when only the grease pack is needed.

Grease pack part no.: GR-S-010 (10 g)

Air Cylinder Short Type Standard: Double Acting, Single Rod CG3 Series


Dimensions

*1 Use a thin wrench when tightening the piston rod.

*2 Long male rod end type (G) is the same rod end dimensions (A, AL, H) as the CG1 series.

*3 When female thread is used, use a washer, etc. to prevent the contact part at the rod end from being deformed depending on the material of the work piece.

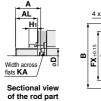
*1 The rod end nut should be mounted in the position t (clearance) so that it will have a clearance of 1 mm or more in order to prevent interference of the nut with the bolt for mounting bracket when the rod is retracted.

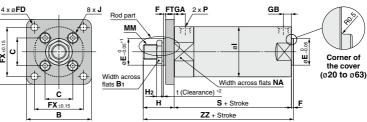
Symbol Bore size (mm)	A	AL	в	Bı	с	D	GA	GB	н	H1	H2	I	J	KA	LC	LD	LH	LS	LT	LX	LZ	м	ММ	NA	Р	s	w	x	Y	z	zz
20	14.5	12	34	13	14	8	12	6	20	5	4	26	M4 x 0.7	Width across flats 6 length 3.5	4	6	20	33	(3)	32	44	3	M8 x 1.25	24	M5 x 0.8	57	10	15	7	32	83
25	17.5	15	38.5	17	16.5	10	12.5	7	23	6	4	31	M5 x 0.8	Width across flats 8 length 3.5	4	6	22	36	(3)	36	49	3.5	M10 x 1.25	29	M5 x 0.8	60	10	15	7	35	89.5
32	17.5	15	45	17	20	12	11	7.5	23	6	4	38	M5 x 0.8	Width across flats 10 length 3.5	4	7	25	36	(3)	44	58	3.5	M10 x 1.25	35.5	Rc1/8	62	10	16	8	36	91.5
40	23.5	20.5	54.5	19	26	14	10.5	7.5	29	8	5.5	47	M6 x 1	Width across flats 12 length 3.5	4	7	30	35	(3)	54	71	4	M14 x 1.5	44	Rc1/8	62	10	16.5	8.5	42.5	98
50	29	26	70.5	27	32	18	15	12	35	11	8	58	M8 x 1.25	Width across flats 16 length 4.5	5	10	40	49	(4.5)	66	86	5	M18 x 1.5	55	Rc1/4	84	17.5	22	11	52.5	128.5
63	29	26	82.5	27	38	18	15	12	35	11	8	72	M10 x 1.5	Width across flats 16 length 4.5	5	12	45	49	(4.5)	82	106	5	M18 x 1.5	69	Rc1/4	84	17.5	22	13	52.5	128.5
80	35.5	32.5	101	32	50	22	17	16	44	13	9.5	89	M10 x 1.5	Width across flats 19 length 4.5	6	11	55	56	(4.5)	100	125	5	M22 x 1.5	80	Rc1/4	104	20	28.5	14	68	157.5
100	35.5	32.5	121	41	60	26	20	16	44	16	9.5	110	M12 x 1.75	Width across flats 22 length 4.5	6	14	65	57	(6)	120	150	7	M26 x 1.5	100	Rc3/8	105	20	30	16	68	162

* Use a thin wrench when tightening the piston rod.

Foot

* Refer to the dimensions of the basic type for the female rod end type and the long male rod end type.


(mm)


Ν

Dimensions

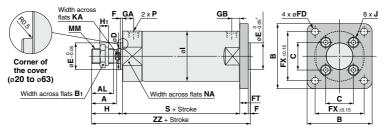
Rod Flange: CG3FN Bore size - Stroke

With rubber bumper

*1 End boss is machined on the flange for øE.

*2 The rod end nut should be mounted in the position t (clearance) so that it will have a clearance of 1 mm or more in order to prevent interference of the nut with the bolt for mounting bracket when the rod is retracted.

Rod Flange


	<u> </u>													_										<u> </u>
Symbol Bore size (mm)	A	AL	в	B1	с	D	E	F	FX	FD	FT	GA	GB	н	H1	H2	Т	J	KA	мм	NA	Р	s	zz
20	14.5	12	40	13	14	8	12	2	28	5.5	6	12	6	20	5	4	26	M4 x 0.7	Width across flats 6 length 3.5	M8 x 1.25	24	M5 x 0.8	57	79
25	17.5	15	44	17	16.5	10	14	2	32	5.5	7	12.5	7	23	6	4	31	M5 x 0.8	Width across flats 8 length 3.5	M10 x 1.25	29	M5 x 0.8	60	85
32	17.5	15	53	17	20	12	18	2	38	6.6	7	11	7.5	23	6	4	38	M5 x 0.8	Width across flats 10 length 3.5	M10 x 1.25	35.5	Rc1/8	62	87
40	23.5	20.5	61	19	26	14	25	2	46	6.6	8	10.5	7.5	29	8	5.5	47	M6 x 1	Width across flats 12 length 3.5	M14 x 1.5	44	Rc1/8	62	93
50	29	26	76	27	32	18	30	2	58	9	9	15	12	35	11	8	58	M8 x 1.25	Width across flats 16 length 4.5	M18 x 1.5	55	Rc1/4	84	121
63	29	26	92	27	38	18	32	2	70	11	9	15	12	35	11	8	72	M10 x 1.5	Width across flats 16 length 4.5	M18 x 1.5	69	Rc1/4	84	121
80	35.5	32.5	104	32	50	22	40	3	82	11	11	17	16	44	13	9.5	89	M10 x 1.5	Width across flats 19 length 4.5	M22 x 1.5	80	Rc1/4	104	151
100	35.5	32.5	128	41	60	26	50	3	100	14	14	20	16	44	16	9.5	110	M12 x 1.75	Width across flats 22 length 4.5	M26 x 1.5	100	Rc3/8	105	152

* Use a thin wrench when tightening the piston rod.

* Refer to the dimensions of the basic type for the female rod end type and the long male rod end type.

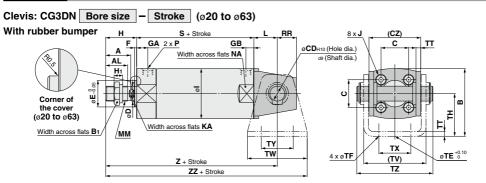
Head Flange: CG3GN Bore size Stroke

With rubber bumper

* End boss is machined on the flange for øE.

(mm)

Head	Flang	е																						(mm)
Bore size (mm)	Standard stroke	A	AL	в	B1	с	D	Е	F	FX	FD	FT	GA	GB	н	Hı	Т	J	KA	мм	NA	Р	S	zz
20	Up to 200	14.5	12	40	13	14	8	12	2	28	5.5	6	12	6	20	5	26	M4 x 0.7	Width across flats 6 length 3.5	M8 x 1.25	24	M5 x 0.8	57	85
25	Up to 300	17.5	15	44	17	16.5	10	14	2	32	5.5	7	12.5	7	23	6	31	M5 x 0.8	Width across flats 8 length 3.5	M10 x 1.25	29	M5 x 0.8	60	92
32	Up to 300	17.5	15	53	17	20	12	18	2	38	6.6	7	11	7.5	23	6	38	M5 x 0.8	Width across flats 10 length 3.5	M10 x 1.25	35.5	Rc1/8	62	94
40	Up to 300	23.5	20.5	61	19	26	14	25	2	46	6.6	8	10.5	7.5	29	8	47	M6 x 1	Width across flats 12 length 3.5	M14 x 1.5	44	Rc1/8	62	101
50	Up to 300	29	26	76	27	32	18	30	2	58	9	9	15	12	35	11	58	M8 x 1.25	Width across flats 16 length 4.5	M18 x 1.5	55	Rc1/4	84	130
63	Up to 300	29	26	92	27	38	18	32	2	70	11	9	15	12	35	11	72	M10 x 1.5	Width across flats 16 length 4.5	M18 x 1.5	69	Rc1/4	84	130
80	Up to 300	35.5	32.5	104	32	50	22	40	3	82	11	11	17	16	44	13	89	M10 x 1.5	Width across flats 19 length 4.5	M22 x 1.5	80	Rc1/4	104	162
100	Up to 300	35.5	32.5	128	41	60	26	50	3	100	14	14	20	16	44	16	110	M12 x 1.75	Width across flats 22 length 4.5	M26 x 1.5	100	Rc3/8	105	166

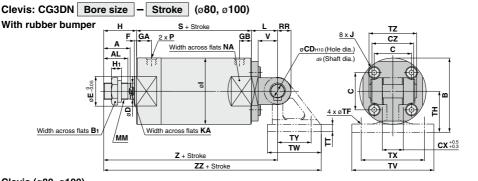

SMC

* Use a thin wrench when tightening the piston rod.

* Refer to the dimensions of the basic type for the female rod end type and the long male rod end type.

Air Cylinder Short Type Standard: Double Acting, Single Rod CG3 Series

Dimensions



Clevis (ø20 to ø63)

Bore size (mm)	Standard stroke	A	AL	в	B1	с	CD	cz	D	Е	F	GA	GB	н	H1	I	J	КА	L	мм
20	Up to 200	14.5	12	38	13	14	8	(29)	8	12	2	12	6	20	5	26	M4 x 0.7	Width across flats 6 length 3.5	14	M8 x 1.25
25	Up to 300	17.5	15	45.5	17	16.5	10	(33)	10	14	2	12.5	7	23	6	31	M5 x 0.8	Width across flats 8 length 3.5	16	M10 x 1.25
32	Up to 300	17.5	15	54	17	20	12	(40)	12	18	2	11	7.5	23	6	38	M5 x 0.8	Width across flats 10 length 3.5	20	M10 x 1.25
40	Up to 300	23.5	20.5	63.5	19	26	14	(49)	14	25	2	10.5	7.5	29	8	47	M6 x 1	Width across flats 12 length 3.5	22	M14 x 1.5
50	Up to 300	29	26	79	27	32	16	(60)	18	30	2	15	12	35	11	58	M8 x 1.25	Width across flats 16 length 4.5	25	M18 x 1.5
63	Up to 300	29	26	96	27	38	18	(74)	18	32	2	15	12	35	11	72	M10 x 1.5	Width across flats 16 length 4.5	30	M18 x 1.5
												_	_	_	_	_				

Standard stroke	NA	Р	RR	s	TE	TF	тн	тт	тν	тw	тх	ТΥ	тz	z	zz	Applicable pin part no.
Up to 200	24	M5 x 0.8	11	57	10	5.5	25	3.2	(35.8)	42	16	28	43.4	91	112	CD-G02
Up to 300	29	M5 x 0.8	13	60	10	5.5	30	3.2	(39.8)	42	20	28	48	99	120	CD-G25
Up to 300	35.5	Rc1/8	15	62	10	6.6	35	4.5	(49.4)	48	22	28	59.4	105	129	CD-G03
Up to 300	44	Rc1/8	18	62	10	6.6	40	4.5	(58.4)	56	30	30	71.4	113	141	CD-G04
Up to 300	55	Rc1/4	20	84	20	9	50	6	(72.4)	64	36	36	86	144	176	CD-G05
Up to 300	69	Rc1/4	22	84	20	11	60	8	(90.4)	74	46	46	105.4	149	186	CD-G06
	stroke Up to 200 Up to 300 Up to 300 Up to 300 Up to 300	Standard stroke NA Up to 200 24 Up to 300 29 Up to 300 35.5 Up to 300 44 Up to 300 55 Up to 300 69	stroke NA P Up to 200 24 M5 x 0.8 Up to 300 29 M5 x 0.8 Up to 300 35.5 Rc1/8 Up to 300 44 Rc1/8 Up to 300 55 Rc1/4	stroke NA P HR Up to 200 24 M5 x 0.8 11 Up to 300 29 M5 x 0.8 13 Up to 300 35.5 Rc1/8 15 Up to 300 55 Rc1/8 12	stroke NA P HH S Up to 200 24 M5 x 0.8 11 57 Up to 300 29 M5 x 0.8 13 60 Up to 300 35.5 Rc1/8 15 62 Up to 300 55 Rc1/4 18 62 Up to 300 55 Rc1/4 20 84	stroke NA P HR S IE Up to 200 24 M5 x 0.8 11 57 10 Up to 300 29 M5 x 0.8 13 60 10 Up to 300 35.5 Rc1/8 15 62 10 Up to 300 44 Rc1/8 18 62 10 Up to 300 55 Rc1/4 20 84 20	stroke NA P HR S IE IF Up to 200 24 M5 x 0.8 11 57 10 5.5 Up to 300 29 M5 x 0.8 13 60 10 5.5 Up to 300 35.5 Rc1/8 15 62 10 6.6 Up to 300 44 Rc1/8 18 62 10 6.6 Up to 300 55 Rc1/4 20 84 20 9	stroke NA P HR S IE IF IH Up to 200 24 M5 x 0.8 11 57 10 5.5 25 Up to 300 29 M5 x 0.8 13 60 10 5.5 30 Up to 300 35.5 Rc1/8 15 62 10 6.6 35 Up to 300 44 Rc1/8 18 62 10 6.6 40 Up to 300 55 Rc1/4 20 84 20 9 50	stroke NA P HR S IE IF II II Up to 200 24 M5 x 0.8 11 57 10 5.5 25 3.2 Up to 300 29 M5 x 0.8 13 60 10 5.5 30 3.2 Up to 300 35.5 Rc1/8 15 62 10 6.6 35 4.5 Up to 300 44 Rc1/8 18 62 10 6.6 40 4.5 Up to 300 55 Rc1/4 20 84 20 9 50 6	stroke NA P RR S IE IF IH II IV Up to 200 24 M5 x 0.8 11 57 10 5.5 25 3.2 (35.8) Up to 300 29 M5 x 0.8 13 60 10 5.5 30 3.2 (39.8) Up to 300 35.5 Rc1/8 15 62 10 6.6 35 4.5 (49.4) Up to 300 4 Rc1/8 18 62 10 6.6 40 4.5 (58.4) Up to 300 55 Rc1/4 20 84 20 9 50 6 (72.4)	stroke NA P HR S IE IF II II IV IW Up to 200 24 M5 x 0.8 11 57 10 5.5 25 3.2 (35.8) 42 Up to 300 29 M5 x 0.8 13 60 10 5.5 30 3.2 (39.8) 42 Up to 300 35.5 Rc1/8 15 62 10 6.6 35 4.5 (49.4) 48 Up to 300 44 Rc1/8 18 62 10 6.6 40 4.5 (48.4) 56 Up to 300 55 Rc1/4 20 84 20 9 50 6 (72.4) 64	stroke NA P HR S IE IF IH II IV IW IX Up to 200 24 M5 x 0.8 11 57 10 5.5 25 3.2 (35.8) 42 16 Up to 300 29 M5 x 0.8 13 60 10 5.5 30 3.2 (38.8) 42 20 Up to 300 29 M5 x 0.8 13 60 10 5.5 30 3.2 (38.8) 42 20 Up to 300 35.5 Rc1/8 15 62 10 6.6 35 4.5 (49.4) 48 22 Up to 300 44 Rc1/8 18 62 10 6.6 40 4.5 (58.4) 56 30 Up to 300 55 Rc1/4 20 84 20 9 50 6 (72.4) 64 36	stroke NA P HR S IE IF IH II IV IW IX IY Up to 200 24 M5 x 0.8 11 57 10 5.5 25 3.2 (35.8) 42 16 28 Up to 300 29 M5 x 0.8 13 60 10 5.5 30 3.2 (39.8) 42 20 28 Up to 300 35.5 Rc1/8 15 62 10 6.6 35 4.5 (49.4) 48 22 28 Up to 300 44 Rc1/8 18 62 10 6.6 40 4.5 (58.4) 56 30 30 Up to 300 55 Rc1/4 20 84 20 9 50 6 (72.4) 64 36 36	stroke NA P HR S IE IF IH II IV IV IX IY IZ Up to 200 24 M5 x 0.8 11 57 10 5.5 25 3.2 (35.8) 42 16 28 43.4 Up to 300 29 M5 x 0.8 13 60 10 5.5 30 3.2 (39.8) 42 20 28 48 Up to 300 35.5 Rc1/8 15 62 10 6.6 35 4.5 (49.4) 48 22 28 59.4 Up to 300 44 Rc1/8 18 62 10 6.6 40 4.5 (58.4) 56 30 30 71.4 Up to 300 55 Rc1/4 20 84 20 9 50 6 (72.4) 64 36 36 86	stroke NA P HR S IE IF II II IW IW IX IY IZ Z Up to 200 24 M5 x 0.8 11 57 10 5.5 25 3.2 (35.8) 42 16 28 43.4 91 Up to 300 29 M5 x 0.8 13 60 10 5.5 30 3.2 (39.8) 42 20 28 43.4 91 Up to 300 35.5 Rc1/8 15 62 10 6.6 35 4.5 (49.4) 48 22 28 59.4 105 Up to 300 44 Rc1/8 18 62 10 6.6 40 4.5 (58.4) 56 30 30 7.1.4 113 Up to 300 55 Rc1/4 20 84 20 9 50 6 (72.4) 64 36 36 86 144	stroke NA P RH S IE IF IH II IV IW IX IY IZ Z ZZ Up to 200 24 M5 x 0.8 11 57 10 5.5 25 3.2 (35.8) 42 16 28 43.4 91 112 Up to 300 29 M5 x 0.6 13 60 10 5.5 30 3.2 (39.8) 42 20 28 48 99 120 Up to 300 35.5 Rc1/8 15 62 10 6.6 35 4.5 (49.4) 48 22 28 59.4 105 129 Up to 300 44 Rc1/8 18 62 10 6.6 40 4.5 (58.4) 56 30 30 77.1.4 113 141 Up to 300 55 Rc1/4 20 84 20 9 50 6 (72.4) 64 36

* Use a thin wrench when tightening the piston rod. * Refer to the dimensions of the basic type for the female rod end type and the long male rod end type. * Refer to page 460 for pivoting bracket.

Clevis (ø80, ø100) (mm) Bore size Standard Α AL в B1 с CD сх cz D Е F GA GB н H1 I J KA L (mm) stroke 80 89 M10 x 1.5 Width across flats 19 length 4.5 35 3 44 Up to 300 35.5 32.5 99.5 32 50 18 28 56 22 40 17 16 13 100 Up to 300 35.5 32.5 120 41 60 22 32 64 26 50 3 20 16 44 16 110 M12 x 1.75 Width across flats 22 length 4.5 43

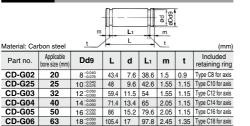
Bore size (mm)	Standard stroke	мм	NA	Р	RR	s	TF	тн	тт	тν	тw	тх	ТΥ	ΤZ	۷	z	zz	Applicable pin part no.
80	Up to 300	M22 x 1.5	80	Rc1/4	18	104	11	55	11	110	72	85	45	64	26	183	241.5	IY-G08
100	Up to 300	M26 x 1.5	100	Rc3/8	22	105	13.5	65	12	130	93	100	60	72	32	192	268.5	IY-G10

* Use a thin wrench when tightening the piston rod. * Refer to the dimensions of the basic type for the female rod end type and the long male rod end type. * Refer to page 460 for pivoting bracket. (mm)

CG3 Series **Dimensions of Accessories**

Single Knuckle Joint

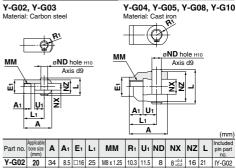
I-G02, I Material: (el				I-G04, I Material:			G08, I-0	G10
		<u>D+10</u>	¥,]	L			PR		NX (mm)
Part no.	Applicable bore size (mm)	A	A 1	E1	Lı	ММ	R1	U1	ND _{H10}	NX
I-G02	20	34	8.5	□16	25	M8 x 1.25	10.3	11.5	8+0.058	8-0.2
I-G03	25, 32	41	10.5	□20	30	M10 x 1.25	12.8	14	10 +0.058	10-0.2
I-G04	40	42	14	ø22	30	M14 x 1.5	12	14	10 +0.058	18-0.3
I-G05	50, 63	56	18	ø28	40	M18 x 1.5	16	20	14 ^{+0.070}	22-0.3
I-G08	80	71	21	ø38	50	M22 x 1.5	21	27	18+0.070	28-0.3
I-G10	100	79	21	ø44	55	M26 x 1.5	24	31	22 +0.084	32-0.3


Knuckle Pin

Material: Iror	1							(mm)
Part no.	Applicable bore size (mm)	Dd9	L	d	Lı	m	t	Included retaining ring
IY-G02	20	8-0.040	21	7.6	16.2	1.5	0.9	Type C8 for axis
IY-G03	25, 32	10-0.040	25.6	9.6	20.2	1.55	1.15	Type C10 for axis
IY-G04	40	10-0.040	41.6	9.6	36.2	1.55	1.15	Type C10 for axis
IY-G05	50, 63	14-0.050	50.6	13.4	44.2	2.05	1.15	Type C14 for axis
IY-G08	80	18-0.050	64	17	56.2	2.55	1.35	Type C18 for axis
IY-G10	100	22-0.065	72	21	64.2	2.55	1.35	Type C22 for axis

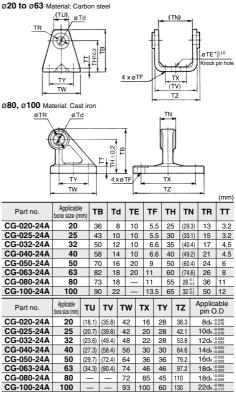
* Retaining rings are included.

Clevis Pin

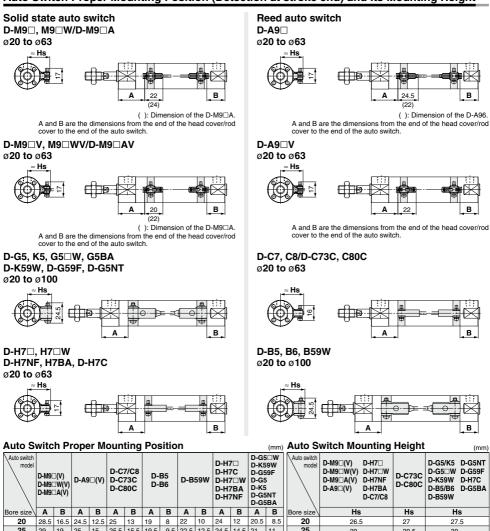

Retaining rings are included.

* A clevis pin and a knuckle pin are common for the bore size ø80 and ø100

Rod End Nut (For Male Thread)


Material: Ca	ç rbon steel				U U			(mm)
Part no.	Applicable bore size (mm)	d	Hı	H2	B1	с	øD	øA
NT-02G3	20	M8 x 1.25	5	4	13	(15)	12.5	10
NT-03G3	25, 32	M10 x 1.25	6	4	17	(19.6)	16.5	12
NT-04G3	40	M14 x 1.5	8	5.5	19	(21.9)	18	16.4
NT-05G3	50, 63	M18 x 1.5	11	8	27	(31.2)	26	20.4
NT-08G3	80	M22 x 1.5	13	9.5	32	(37)	31	28
NT-10G3	100	M26 x 1.5	16	9.5	41	(47.3)	39	33
460								-

Double Knuckle Joint


Y-G02	20	34	8.5	□16	25	M8 X 1.25	10.3						
Y-G03	25, 32	41	10.5	□20	30	M10 x 1.25	12.8	14	10	$10^{+0.4}_{+0.2}$	20	25.6	IY-G03
Y-G04	40	42	16	ø22	30	M14 x 1.5	12	14	10	$18^{+0.5}_{+0.3}$	36	41.6	IY-G04
Y-G05	50, 63	56	20	ø28	40	M18 x 1.5	16	20	14	22+0.5	44	50.6	IY-G05
Y-G08	80	71	23	ø38	50	M22 x 1.5	21	27	18	28 +0.5 +0.3	56	64	IY-G08
Y-G10	100	79	24	ø44	55	M26 x 1.5	24	31	22	$32^{+0.5}_{+0.3}$	64	72	IY-G10
A knuckle pin and retaining rings are included.													

Pivoting Bracket (Order separately)

CG3 Series **Auto Switch Mounting**

Auto Switch Proper Mounting Position (Detection at stroke end) and Its Mounting Height

Note 1) Adjust the auto switch after confirming the operating condition in the actual setting.

Note 2) For the combination of the following auto switches, bore sizes and mounting positions, the auto switch cannot be mounted to the port side.

D-H7□ type … On the head side of the bore size ø20, ø25, ø32, ø40, ø50, ø63

• D-A9□/C7□/C8 types ··· On the head side of the bore size ø20, ø32, ø40

• D-G5□/K5□/B59W types ... On the head side of the bore size ø20, ø25, ø32, ø50, ø63

• D-B5□/B6□ types … On the head side of the bore size ø20, ø25, ø32, ø50, ø63, ø80, ø100 and the rod side of the bore size ø20, ø25, ø32

в

B

в

в

D-G5BA

Hs

(mm)

Minimum Stroke for Auto Switch Mounting

				n: Nun	nber of auto switches (mm)
			Number of auto switches		
Auto switch model	With 1 pc.		2 pcs.	With	
		Different surfaces	Same surface	Different surfaces	Same surface
D-M9 □	5	15 Note 1)	40 Note 1)	$20 + 35 \frac{(n-2)}{2}$ (n = 2, 4, 6···) ^{Note 3)}	55 + 35 (n - 2) (n = 2, 3, 4, 5…)
D-M9⊟W	10	15 Note 1)	40 Note 1)	$20 + 35 \frac{(n-2)}{2}$ (n = 2, 4, 6···) ^{Note 3)}	55 + 35 (n - 2) (n = 2, 3, 4, 5…)
D-M9□A	10	25	40 Note 1)	$25 + 35 \frac{(n-2)}{2}$ (n = 2, 4, 6) Note 3)	60 + 35 (n - 2) (n = 2, 3, 4, 5…)
D-A9□	5	15	30 Note 1)	$15 + 35 \frac{(n-2)}{2}$ (n = 2, 4, 6) ^{Note 3)}	50 + 35 (n - 2) (n = 2, 3, 4, 5…)
D-M9⊡V	5	20	35	$20 + 35 \frac{(n-2)}{2}$ (n = 2, 4, 6···) ^{Note 3)}	35 + 35 (n - 2) (n = 2, 3, 4, 5…)
D-A9⊡V	5	15	25	$15 + 35 \frac{(n-2)}{2}$ (n = 2, 4, 6) ^{Note 3)}	25 + 35 (n - 2) (n = 2, 3, 4, 5…)
D-M9⊟WV D-M9⊟AV	10	20	35	$20 + 35 \frac{(n-2)}{2}$ (n = 2, 4, 6) ^{Note 3)}	35 + 35 (n - 2) (n = 2, 3, 4, 5…)
D-C7⊡ D-C80	5	20	60	$20 + 45 \frac{(n-2)}{2}$ (n = 2, 4, 6) ^{Note 3)}	60 + 45 (n - 2) (n = 2, 3, 4, 5…)
D-H7□ D-H7□W D-H7BA D-H7NF	10	25	70	$25 + 45 \frac{(n-2)}{2}$ (n = 2, 4, 6) ^{Note 3)}	70 + 45 (n - 2) (n = 2, 3, 4, 5…)
D-C73C D-C80C D-H7C	5	30	80	$30 + 50 \frac{(n-2)}{2}$ (n = 2, 4, 6) Note 3)	80 + 50 (n - 2) (n = 2, 3, 4, 5…)
D-B5□ D-B64 D-G5□ D-K59□	5	25	70	$25 + 50 \frac{(n-2)}{2}$ (n = 2, 4, 6) ^{Note 3)}	70 + 50 (n - 2) (n = 2, 3, 4, 5…)
D-B59W	10	30	75	$30 + 50 \frac{(n-2)}{2}$ (n = 2, 4, 6···) ^{Note 3)}	75 + 50 (n - 2) (n = 2, 3, 4, 5…)

Note 3) When "n" is an odd number, an even number that is one larger than this odd number is used for the calculation.

Note 1) Auto switch mounting

	With 2 aut	o switches
	Different surfaces	Same surface
Auto switch model	The auto switch proper mounting position is 3.5 mm from the	The auto switch is mounted by slightly displacing it in a direction (cylinder tube circumferential exterior) so that the auto switch and
	back face of the switch holder.	lead wire do not interfere with each other.
D-M9□ D-M9□W	Less than 20 mm stroke Note 2)	Less than 55 mm stroke Note 2)
D-M9□A	Less than 20 mm stroke Note 2)	Less than 60 mm stroke Note 2)
D-A9	_	Less than 50 mm stroke Note 2)

Note 2) Minimum stroke for auto switch mounting in types other than those mentioned in Note 1

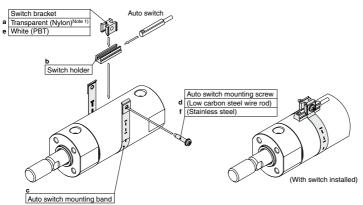
Auto Switch Mounting Brackets/Part No.

Auto switch				Bore si	ze (mm)			
model	20	25	32	40	50	63	80	100
D-M9□(V) D-M9□W(V) D-A9□(V)	Note 1) BMA3-020 (A set of a, b, c, d)	Note 1) BMA3-025 (A set of a, b, c, d)	Note 1) BMA3-032 (A set of a, b, c, d)	Note 1) BMA3-040 (A set of a, b, c, d)	Note 1) BMA3-050 (A set of a, b, c, d)	Note 1) BMA3-063 (A set of a, b, c, d)	_	-
D-M9□A(V) ^{Note 2)}	BMA3-020S (A set of b, c, e, f)	BMA3-025S (A set of b, c, e, f)	BMA3-032S (A set of b, c, e, f)	BMA3-040S (A set of b, c, e, f)	BMA3-050S (A set of b, c, e, f)	BMA3-063S (A set of b, c, e, f)	-	_
D-C7□ D-H7□W D-H7NF D-H7□/C80 D-C73C/C80C	BMA2-020A (A set of c and d)	BMA2-025A (A set of c and d)	BMA2-032A (A set of c and d)	BMA2-040A (A set of c and d)	BMA2-050A (A set of c and d)	BMA2-063A (A set of c and d)	_	_
D-H7BA	BMA2-020AS (A set of c and f)	BMA2-025AS (A set of c and f)	BMA2-032AS (A set of c and f)	BMA2-040AS (A set of c and f)	BMA2-050AS (A set of c and f)	BMA2-063AS (A set of c and f)	_	_
D-B5□/B64 D-B59W D-G5□/K59 D-G5□W/K59W D-G5BA/G59F D-G5NT	BA-01 (A set of c and d)	BA-02 (A set of c and d)	BA-32 (A set of c and d)	BA-04 (A set of c and d)	BA-05 (A set of c and d)	BA-06 (A set of c and d)	BA-08 (A set of c and d)	BA-10 (A set of c and d)

 Note 1) Since the switch bracket (made from nylon) are affected in an environment where alcohol, chloroform, methylamines, hydrochloric acid or sulfuric acid is splashed over, so it cannot be used. Please consult SMC regarding other chemicals.
 Note 2) When mounting a D-M9DA(V) type auto switch, if the switch bracket is mounted on the indicator light, it may damage the auto switch. Therefore, be

Note 2) When mounting a D-M9 A(V) type auto switch, if the switch bracket is mounted on the indicator light, it may damage the auto switch. Therefore, be sure to avoid mounting the switch bracket on the indicator light.

[Stainless Steel Mounting Screw]


The following stainless steel mounting screw kit is available. Use it in accordance with the operating environment.

(Since the auto switch mounting bracket is not included, order it separately.)

BBA3: D-B5,B6,G5,K5 types

BBA4: D-C7,C80,H7 types Note) Refer to page 1369 for details on the BBA3.

The above stainless steel screws are used when a cylinder is shipped with the D-H7BA/G5BA auto switches. When only an auto switch is shipped independently, the BBA3 or BBA4 is attached.

* Band (c) is mounted so that the projected part is on the internal side (contact side with the tube).

Operating Range

								(mm)	
Auto quitab model	Bore size								
Auto switch model	20	25	32	40	50	63	80	100	
D-M9□(V) D-M9□W(V) D-M9□A(V)	4.5	5.0	4.5	5.5	5.0	5.5	_	_	
D-A9	7	6	8	8	8	9	—	-	
D-C7/C80 D-C73C/C80C	8	10	9	10	10	11	_	-	
D-B5□/B64	8	10	9	10	10	11	11	11	
D-B59W	13	13	14	14	14	17	16	18	
D-H7□/H7□W D-H7NF/H7BA	4	4	4.5	5	6	6.5	_		
D-H7C	7	8.5	9	10	9.5	10.5	—	-	
D-G5□/G5□W/G59F D-G5BA/K59/K59W	4	4	4.5	5	6	6.5	6.5	7	
D-G5NT	4	4	4.5	5	6	6.5	6.5	7	

* Values which include hysteresis are for guideline purposes only, they are not a guarantee (assuming approximately ±30% dispersion) and may change substantially depending on the ambient environment.

Cylinder Mounting Bracket, by Stroke/Auto Switch Mounting Surfaces

			st: Stroke (mm)				
	Basic, Foot, Flange, Clevis						
Auto switch model	With 1 pc. (Rod cover side)	With 2 pcs. (Different surfaces)	With 2 pcs. (Same surface)				
Auto switch mounting surface	Port side	Port side	Port side				
Auto switch model	т	1	'				
D-M9□(V) D-M9□W(V) D-M9□A(V) D-A9□	10 st or more	15 to 44 st	45 st or more				
D-C7/C8	10 st or more	15 to 49 st	50 st or more				
D-H7□/H7□W D-H7BA/H7NF	10 st or more	15 to 59 st	60 st or more				
D-C73C/C80C/H7C	10 st or more	15 to 64 st	65 st or more				
D-B5/B6/G5/K5 D-G5⊡W/K59W/G5BA D-G59F/G5NT	10 st or more	15 to 74 st	75 st or more				
D-B59W	15 st or more	20 to 74 st	75 st or more				

Other than the applicable auto switches listed in "How to Order", the following auto switches are mountable.

н

Refer to pages 1271 to 1365 for detailed specifications.

Туре	Model	Electrical entry	Features	Applicable bore size	
	D-H7A1, H7A2, H7B		—	ø20 to ø63	
Solid state	D-H7NW, H7PW, H7BW		Diagnostic indication (2-color indicator)		
Solid state	D-H7BA		Water resistant (2-color)		
	D-G5NT	Grommet (In-line)	With timer	ø20 to ø100	
Reed	D-C73, C76		_	ø20 to ø63	
	D-C80		Without indicator light		
	D-B53		_	ø20 to ø100	

* Normally closed (NC = b contact) solid state auto switches (D-M9 E(V)) are also available. For details, refer to page 1290.

CG3 Series Specific Product Precautions 1

Be sure to read this before handling the products. Refer to page 20 for safety instructions and pages 21 to 30 for actuator and auto switch precautions.

Handling

Marning

- 1. Operate the cylinder within the specified cylinder speed, kinetic energy and lateral load at the rod end. Otherwise, cylinder and seal damage may occur.
- The allowable kinetic energy is different between the cylinders with male rod end and with female rod end due to the different thread sizes. Refer to page 456.
- 3. When the cylinder is used as mounted with a single side fixed or free (basic type, flange type), be careful not to apply vibration or impact to the cylinder body. A bending moment will be applied to the cylinder due to the vibration generated at the stroke end, and the cylinder may be damaged. In such a case, mount a bracket to reduce the vibration of the cylinder or use the cylinder at a piston speed low enough to prevent the cylinder from vibrating at the stroke end.

Furthermore, when the cylinder is moved or mounted horizontally and with a single side fixed, use a bracket to fix the cylinder.

4. When female rod end is used, use a washer, etc. to prevent the contact part at the rod end from being deformed depending on the material of the work piece.

ACaution

- 1. Do not use the air cylinder as an air- hydro cylinder. This will result in oil leakage and damage the product.
- 2. Use a thin wrench when tightening the piston rod.
- 3. Check the mounting direction of the rod end nut (for male thread). Refer to Mounting Procedure on page 455 for details.
- 4. There are some changes in the dimensions and the specifications of this model from the current model. Please check them when replacing from the current model. Check the operating conditions and interference with workpieces before use.

Disassembly/Replacement

≜ Warning

1. Only people who have sufficient knowledge and experience are allowed to replace seals.

The person who disassembles and reassembles the cylinder is responsible for the safety of the product. Repeatedly disassembling and reassembling the product may cause wearing or deformation of the screws as well as a decline in screw tightening strength. When reassembling the product, be sure to check the cover and tubing screws for wear, deformities, or any other abnormalities. Operating the product with damaged screws may result in the cover or tubing coming off during operation, which could lead to a serious accident. Caution must be taken to avoid such incidents.

▲Caution

1. Do not replace the bushings.

The bushings are press-fit. To replace them, they must be replaced together with the cover assembly.

2. To replace a seal, apply grease to the new seal before installing it.

If the cylinder is put into operation without applying grease to the seal, it could cause the seal to wear significantly, leading to premature air leakage.

3. Cylinders with ø50 or larger bore sizes cannot be disassembled.

When disassembling cylinders with bore sizes ø20 through ø40, grip the double flat part of either the head cover or the rod cover with a vise and loosen the other side with a wrench or a monkey wrench, etc., and then remove the cover. When retightening, tighten approximately 2 degrees more than the original position. (Cylinders with ø50 or larger bore sizes are tightened with a large tightening torque and cannot be disassem bled. If disassembly is required, please contact SMC.)

4. When replacing seals, take care not to hurt your hand or finger on the corners of parts.