Air Cylinders Model Selection

Technical data for air cylinders

For detailed technical data other than the air cylinder model selection, refer to pages 1897 to 1904.

Data 1: Bore Size Selection (page 1898)

- Data 2: Air Consumption and Required Air Volume (page 1902)
- Data 3: Theoretical Output Table (page 1903)
- Data 4: Condensation (page 1904)

Step

Obtain the bore of the cylinder tube. \rightarrow Refer to Graph (1) and (2).

$(\underline{1})$ Determine the load factor in accordance with the purpose.

Purpose of operation Load fa								
Static operation 0.7 or les: (Clamping, Low-speed vise crimping, etc.) (70% or les:								
Dynamic	Horizontal movement of load on guide	1 or less (100% or less)						
operation	Vertical and horizontal movement of the load	0.5 or less ^{Note)} (50% or less)						

Note) If it is particularly necessary to operate at high speeds, the load rate must be reduced further. (In the graph, it is possible to select a load rate of 0.4, 0.3, 0.2, or less.)

2 Determine the operating pressure.

Generally, set the regulator to 85% of the source air pressure. (In the graph, a selection between 0.2 MPa and 0.8 MPa is possible.)

③ Determine the direction in which the cylinder force will be used. Extending side → Refer to Graph (1).

Retracting side → Refer to Graph (2).

Note) If the same load is applied both for pushing and pulling in a horizontal operation, set the direction to the retracting side.

Step 2

Take the impact at the stroke end into consideration.

- When an external stopper (shock absorber, etc.) is provided to absorb the impact, select a stopper with sufficient absorption capacity.
- ② Stopping the piston with the cylinder without a stopper:

Verify in Graphs (3) to (10) the absorption capacity of the cushion that is enclosed in the cylinder.

- Rubber bumper ······ Urethane rubber is used for preventing metalto-metal contact between the piston and the cover.
- Air cushion....... The air in the exhaust side is compressed slightly before the stroke end, and its reaction force absorbs the kinetic energy of the load, thus enabling the piston to stop quietly.

Step 3

The aspects indicated below may need to be taken into consideration, depending on how the cylinder is operated.

① If a lateral load is applied to the piston rod:

Verify in Graphs (11) to (19) whether the lateral load is within an allowable range.

When using a cylinder with a relatively long stroke, if a buckling force acts on the piston rod or the cylinder tube, verify in the table whether the stroke or the operating pressure is within a safe range.

Step 4

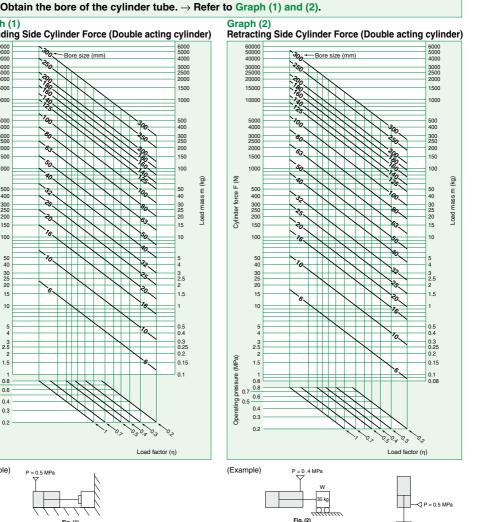
Obtain the cylinder's air consumption and its required air volume.

Obtain the air consumption selecting a compressor and for calculating the running cost and the required (Graphs (21), (22)) that is necessary for selecting a compressor and for calculating the running cost and the required air volume (Graph (23)) that is necessary for selecting equipment such as an air filter or a regulator, or the size of the piping upstream.

Step 1

Air Cylinders Model Selection

Graph (1) Extending Side Cylinder Force (Double acting cylinder) 60000 50000 6000 5000 300 Bore size (mm) 40000 4000 250 30000 25000 3000 2500 101010 20000 2000 15000 1500 10000 13 1000 100 5000 500 300 4000 400 `& 3000 2500 300 250 2000 `e, 200 1500 150 50 1000 100 \$0 ŝ (kg) Cylinder force F 500 50 <u>ر</u>ون` ε 400 40 mass `~s 300 250 30 25 30 Load 200 20 20 63 150 15 76 50 100 10 80 10 50 5 . г_э 40 Â 30 25 3 2.5 ę, 20 2 ð 6 15 1.5 10 Ъ 1 0.5 5 4 0.4 0.3 2.5 2 Operating pressure (MPa) 2.0 2.0 1.5 0.15 0.1 0.8 0.6 0.4 0.3 0.2 ο, ΰ, Load factor (n) (Example) P = 0.5 MPc



Example 1: If the minimum force of 1000 N is necessary to keep the workpiece pressed as shown in Fig. (1), because this is the extending side, use Graph (1) to determine the load factor of 0.7 and the operating pressure of 0.5 MPa. Then, seek the point at which the cylinder force of 1000 N intersects, and this will result in a bore size of 63 mm.

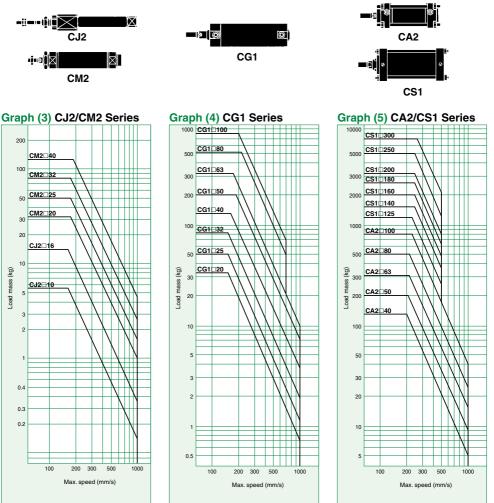
1 N ≈ 0.102 kgf 1 MPa ≈ 10.2 kgf/cm² 1 kgf/cm² ~ 0.098 MPa 1 kqf ≈ 9.8 N

SMC

Example 2: To move a load with a 30 kg mass horizontally on a guide as shown in Fig. (2), because the load is the same for both the extending and retracting sides, use Graph (2), which is the retracting side with a smaller force. Determine the load factor of 1, and the operating pressure of 0.4 MPa. Then, seek the point at which it intersects with the load mass of 30 kg, and this will result in a bore size of 40 mm.

100 kg Fig. (3)

- Example 3: To pull a load with a 100 kg mass vertically upward as shown in Fig. (3), use Graph (2) to determine the load factor of 0.5 and the operating pressure of 0.5 MPa.
 - Then, seek the point at which it intersects with the load mass of 100 kg, and this will result in a bore size of 80 mm.

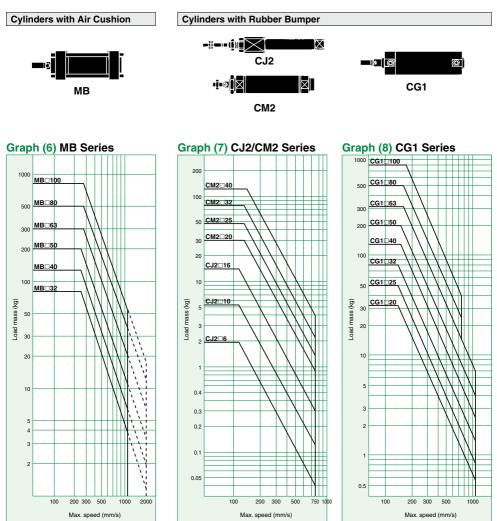

Step 2

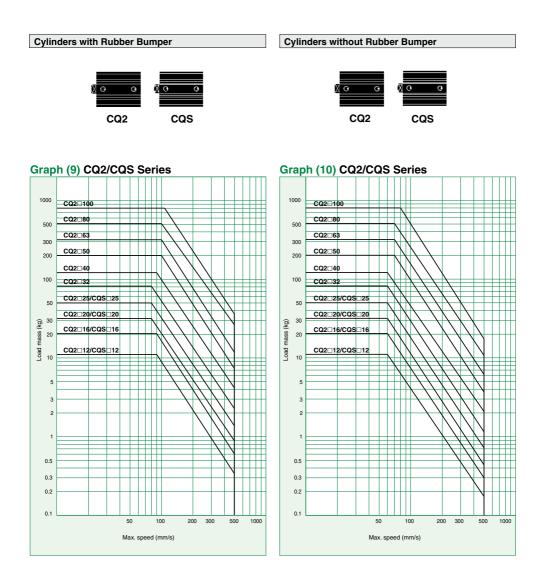
Take the impact at the stroke end into consideration.

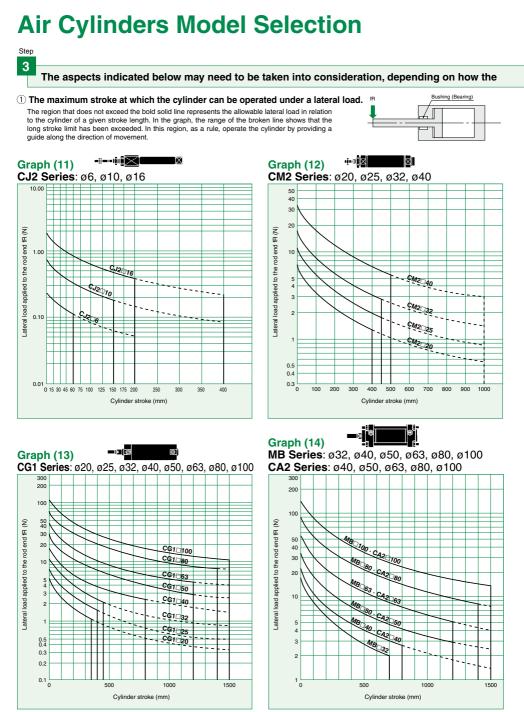
How to Read the Graph

Example 1: According to Graph (3), to move a load mass of 50 kg using a cylinder with an air cushion, CM2□40, it is necessary to set the maximum speed at 300 mm/s or less, considering the capacity of the air cushion.

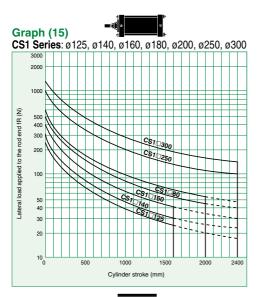
Cylinders with Air Cushion

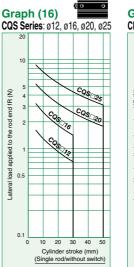

Air Cylinders Model Selection

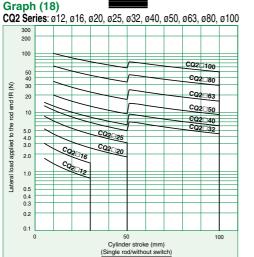

Step 2

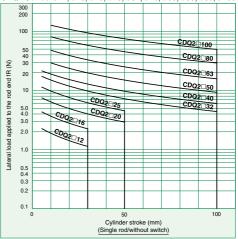

Take the impact at the stroke end into consideration.

How to Read the Graph


Example 2: According to Graph (8), to move a load mass of 50 kg at a maximum speed of 500 mm/s, in the CG1 series, a bore size of ø80 can be selected.



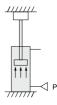

cylinder is operated.



Graph (19)

CDQ2 Series: ø12, ø16, ø20, ø25, ø32, ø40, ø50, ø63, ø80, ø100

Air Cylinders Model Selection


Step 3

The aspects indicated below may need to be taken into consideration, depending on how the

② The relation between the cylinder size and the maximum stroke depending on the mounting type.

Assuming that the force that is generated by the cylinder itself acts as a buckling force on the piston rod or on the piston rod and the cylinder tube, the table below indicates in centimeters the maximum stroke that can be used, which was obtained through calculation. Therefore, it is possible to find the maximum stroke that can be used with each cylinder size according to the relationship between the level of the operating pressure and the type of cylinder mounting, regardless of the load factor.

(cm)

(cm)

Reference: Even under a light load, if the piston rod has been stopped by an external stopper at the extending side of the cylinder, the maximum force generated by the cylinder will act upon the cylinder itself.

Mou	nting type		g e	Maximum :	stroke that c g to buckling	(cm) an be used		Μοι	unting	type		gr e	Махі	mum	stroke	e that	can b	e use	ed acc	ordin	g to b	ucklin	g stre	(cm) ength
Mounting bracket		pol	Operating pressure		CJ2	-	M	ountir	ng bra	icket	bol	Operating pressure		CI						С	-		<u> </u>	-
	igram	Nominal symbol	(MPa)	6	10	16			agram	iono i	Nominal symbol			25	32	40	20	25	32	40	50	63	80	100
Foot: L	Rod side flange: F		0.2	20	29	29	Foot:	- Ro flar	d side nge: F	Head side flange: G	L	0.3	39	49	56	61	38	49	55	80	100	78	96	112
W			0.3	20	23	23	W	1	W		F	0.5 0.7	29 24	37 31	42 35	46 38	29 24	36 30	42 34	60 50	76 63	59 49	73 60	85 71
		B								i u		0.3	16	20	24	25	15	21	24	36	45	34	42	50
	I III	F	0.5	16	17	17			ĥ		G	0.5	11	14	17	17	11	14	17	26	33	25	31	37
₩ 			0.7	13	14	14	J €	vis:		od side		0.7	8	11	13	13	8	11	13	21	27	20	24	29
C	levis:						С	D	tru	nnion: U	с	0.3	36	46	53	56	37	47	53	78	98	76	94	109
	C, D		0.2	-	40	40		là 🛛			D	0.5 0.7	26 21	34 28	39 32	42 34	27 22	35 28	40 32	59 48	74 61	57 46	70 58	82 68
	à		0.3	-	40	40		Ì				0.3	82	103	116	126	81	102	115	150	150	150	-	-
			0.5	_	32	31	Head	Head side trunnion: T				0.5	62	79	89	97	61	78	88	126	159	124	-	-
	۱ <u>ا</u>						- R	<u>e</u>		CA1, CS1 series only		0.7	52	66	75	81	51	65	73	106	133	104	-	-
			0.7	-	26	25					т	0.3	37 27	47	54 40	58 43	38	48 36	55 41	79	100	78 59	-	-
Foot: L	Rod side flange: F		0.2	20	40	40		, , ,		影		0.5 0.7	27	35 29	33	43 35	28 23	36 30	34	60 50	76 63	59 48	-	-
			0.3	20	40	40	Foot:		id side nge: F	Head side flange: G		0.3	100	147	166	181	117	147	150	150	150	150	150	150
		B L	0.5	20	40	40			w	W	L F	0.5	90	113	128	139	89	112	127	150	150	150	150	150
		F	0.5	20	40	40						0.7	76	95	107	117	75	94	107	150	150	150	150	150
l P			0.7	20	40	40		1 44	۳¢۳ H		G	0.3 0.5	55 41	69 52	79 60	85 64	55 41	70 52	79 60	114 87	143 109	112 85	138 105	150 122
	Rod side						ļ		IJ		-	0.7	34	43	49	53	34	43	50	72	91	71	87	102
Foot: L	flange: F		0.2	20	40	40	Foot:		d side nge: F	Head side flange: G		0.3	100	150	200	200	150	150	150	150	150	150	150	150
		B 0.3 L F 0.5	20	40	40	1₩				L F	0.5	100	150	183	199	128	150	150	150	150	150	150	150	
			0.5	20	40	40				3		0.7	100	136	154	167	108	135	150	150	150	150	150	150
			0.3	20	40	40		""			G	0.3 0.5	80 61	101 77	114 87	123 94	80 61	101 77	114 87	150 126	150 150	150 124	150 150	150 150
	0.7 20 40 40			~	0.7	50	64	72	78	50	64	73	105	132	103	127	148							

Front matter 28

cylinder is operated.

																				(cm)
N	Mounting type Mounting bracket diagram		Operating pressure						t ca	n be	use				to b	ouckl	, ,		•	
Mou			Oper	MB MB, CA2					CS1							0	CS2	2		
	diagrar		οN S	(MPa)	32	40	50	63	80	100	125	140	160	180	200	250	300	125	140	160
Foot: L	Rod sid flange: I			0.3	71	81	102	79	98	114	131	117	126	141	158	182	206	103	92	113
w	W	W	F	0.5	56	63	78	61	75	88	101	89	96	108	121	140	158	79	70	86
T	T			0.7	46	52	65	50	62	73	84	74	80	89	101	115	131	66	58	72
胁	"""			0.3	31	35	46	34	42	50	57	49	53	60	68	79	90	45	38	47
	ĥ		G	0.5	23	26	34	25	31	37	42	35	38	44	50	58	66	33	27	34
- F				0.7	19	21	27	19	24	29	34	28	30	34	40	45	53	26	22	27
Clevis C, D		Rod side runnion: U		0.3	67	76	96	73	91	105	122	106	118	130	146	167	190	96	83	106
Pa .		a a a a a a a a a a a a a a a a a a a	C D	0.5	50	57	72	54	68	78	91	78	85	96	109	124	141	71	61	76
				0.7	41	46	60	44	55	64	75	64	69	78	89	101	115	59	50	62
		1]		0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Head si trunnion		Center trunnion: T		0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<i>A</i> w		CS1, CS2 series only		0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			т	0.3	93	105	134	103	128	149	171	151	163	183	206	235	267	135	119	147
l II				0.5	71	80	102	78	97	113	129	113	123	139	156	178	203	101	89	111
1000 Hop	Rod sid	税 e Head side		0.7	58	66	85	65	81	93	107	94	101	115	129	147	168	84	74	91
Foot: L	flange: I		L	0.3	206	234	295	231	287	330	382	339	366	412	459	527	598	301	267	330
W	₩ ♦		F	0.5	158	179	226	177	219	253	293	263	281	315	252	403	458	231	207	253
31071	3.976	3 49/ 6		0.7	132	150	190	148	184	212	245	218	235	265	296	339	385	193	172	212
		· •		0.3	99	112	142	116	136	158	183	160	173	196	218	251	286	144	126	156
			G	0.5	75	85	108	83	102	119	138	120	131	147	165	189	216	109	94	118
*	Rod sid	e Head side		0.7	62	70	90	68	85	99	114	99	108	122	137	157	179	90	78	97
Foot: L	flange: I		L	0.3	280	318	423	313	412	476	549	489	528	594	661	762	863	433	386	476
W	₹ +		F	0.5	234	266	339	257	317	367	423	377	407	457	509	587	665	334	297	367
	3			0.7	194	220	275	216	267	309	356	317	343	385	429	494	561	281	250	309
間		出物		0.3	136	154	206	151	199	231	266	235	254	287	320	369	419	210	185	229
			G	0.5	110	125	158	123	152	176	203	179	194	218	244	281	320	160	141	175
*		annin a		0.7	93	105	132	102	127	147	170	149	144	182	204	235	268	134	117	129

Air Cylinders Model Selection

Step 4

Obtain the cylinder's air consumption and its required air volume.

Cylinder's air consumption and its required air volume.

In equipment that used a cylinder, air consumption is the volume of air that is consumed in the cylinder, or in the piping between the cylinder and the switching valve, every time the switching valve operates.

This is necessary for selecting a compressor and for calculating the running cost. The required air volume is the volume of air that is necessary for operating a specified load at a specified speed, and it is necessary for selecting the F.R.L equipment or the size of the upstream piping.

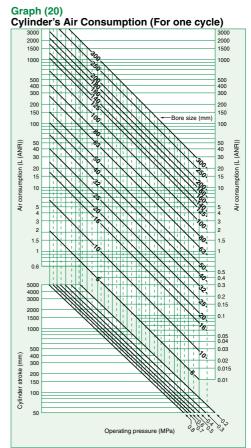
How to Obtain the Air Consumption/How to Read Graphs (20), (21)

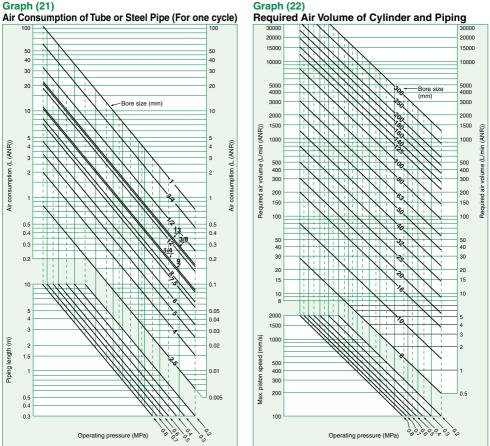
Step 1 By using Graph (20), obtain the air consumption of the air cylinder.

- ① Seek the point at which the operating pressure (diagonal line) intersects with the cylinder stroke, and from that point, perpendicularly extend a vertical line upward.
- 2 From the point at which it intersects with the bore size (diagonal line) of the cylinder to be used, look sideways (either to the right or left) to obtain the air consumption that is required by one cycle of the air cylinder.

Step 2 By using Graph (21), obtain the air consumption of the tube or steel pipe in the same way as in Step 1.

Step 3 Obtain the total air consumption per minute as described below


> (Air consumption of air cylinder + Air consumption of tube or steel pipe) x Number of cycles per minute x Number of cylinders being used = Total air consumption [Unit: L/min (ANR)]


- Note) In selecting a compressor, the temperature drop, leakage, and consumption by the intermediary equipment must be taken into consideration. Thus, select one with a generous capacity, with a discharge that exceeds the total air consumption indicated above. (Reference: At a minimum, select one with 1.4 times the volume; select one with a higher volume as needed.)
- Example: When 10 air cylinders with a 50 mm bore size and a 600 mm stroke are used at a pressure of 0.5 MPa. what is the air consumption of their 5 cycles per minute? (A 2 m tube with a 6 mm bore is used for piping between the cylinders and the switching valve.)
 - 1. Operating pressure 0.5 MPa → Cylinder stroke 600 mm \rightarrow Bore size 50 mm \rightarrow Air consumption 13 L (ANR)
 - 2. Operating pressure 0.5 MPa \rightarrow Piping length 2 m \rightarrow Bore 6 mm \rightarrow Air consumption \approx 0.56 L (ANR)
 - 3. Total air consumption = (13 + 0.56) x 10 x 5 = 678 L/min (ANR)

How to Obtain the Required Air Volume/How to Read Graph (22)

Step 3 By using Graph (22), obtain the air cylinder's required air volume

- ① Seek the point at which the operating pressure (diagonal line) intersects with the cylinder stroke, and from that point, perpendicularly extend a vertical line upward.
- 2 From the point at which it intersects with the bore size (diagonal line) of the cylinder to be used, look sideways (either to the right or left) to obtain the air consumption that is required by one cycle of the air cylinder.
- Example: What is the required air volume for operating a cylinder with a bore size of 50 mm, at pressure of 0.5 MPa, and at a speed of 500 mm/s?
- How to read: Operating pressure 0.5 MPa → Maximum piston speed 500 mm/s \rightarrow Bore size 50 mm \rightarrow Then, a required air volume 350 L/min (ANR) can be obtained

Graph (21)

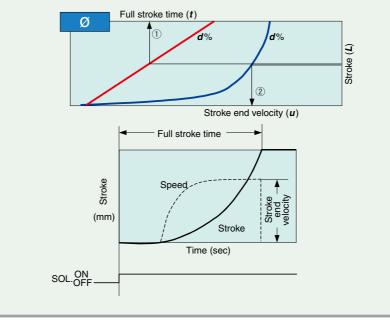
* The piping length is the length of the steel pipe or tube that connects the cylinder with the switching valve (solenoid valve, etc.)

* For the dimensions (bore size and O.D.) of the steel tubing, refer to page 1902.

Air Cylinders' Drive System Full Stroke Time & Stroke End Velocity

How to Read the Graph

This graph shows the full stroke time and stroke end velocity when a cylinder drive system is composed of the most suitable equipment.


As the graph shown below, various load ratio and full stroke time which corresponds to stroke and terminal velocity are indicated for every cylinder bore size.

Conditions

Pressure		0.5 MPa
	1 m	CJ2 series, CM2 series, CQ2 series
Piping length	2 m	MB series, CQ2 series
longth	3 m	CS1 series, CS2 series
Cylinder o	rientation	Vertically upward
Speed controller		Meter-out, connected with cylinder directly, needle fully opened
Load factor		((Load mass x 9.8)/Theoretical output) x 100%

Example

When the cylinder bore size is $\boldsymbol{\sigma}$, its stroke is \boldsymbol{L} , and load ratio is \boldsymbol{d}^{\otimes} , full stroke time \boldsymbol{t} is obtained, as an arrow mark ①, by reading the value on the abscissa over the point at which the ordinate \boldsymbol{L} hits the full stroke line (red line) of \boldsymbol{d}^{\otimes} . Terminal velocity \boldsymbol{u} is obtained, as an arrow mark ②, by reading the value on the abscissa below the point at which the ordinate \boldsymbol{L} hits the terminal velocity line (blue line) of \boldsymbol{d}^{\otimes} .

⊘SMC

Glossary of Terms: Cylinder's Motion Characteristics

(1) Piston start-up time

It is the time between the solenoid valve is energized (de-energized) and the piston (rod) of a cylinder starts traveling. The accurate judgement is done by the start-up of acceleration curve.

(2) Full stroke time

It is the time between the solenoid valve is energized (de-energized) and the piston (rod) of a cylinder is reached at the stroke end.

(3) 90% force time

It is the time between the solenoid valve is energized (de-energized) and the cylinder output is reached at 90% of the theoretical output.

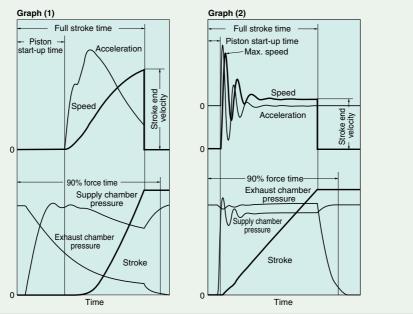
(4) Mean velocity

Values which divided stroke by "full stroke time". In the sequence or diaphragm, it is used as a substituting expression for "full stroke time".

(5) Max. velocity

It is the maximum values of the piston velocity which occurs during the stroke. In the case of Graph (1), it will be the same values as "stroke end velocity". Like Graph (2), when lurching or stick-slipping occurs, it shows substantially larger values.

(6) Stroke end velocity


It is the piston velocity when the piston (rod) of a cylinder is reached at the stroke end. In the case of a cylinder with adjustable cushion, it says the piston velocity at the cushion entrance. It is used for judging the cushion capability and selecting the buffer mechanism.

(7) Impact velocity

It is the piston velocity when the piston (rod) of a cylinder is collided with the external stopper at the stroke end or arbitrary position. (Reference)

Balancing velocity: If a cylinder having enough longer stroke is driven by meter-out, the latter half of a stroke will be in an uniform motion. Regardless of the supply pressure or a load, the piston speed for this time will be dependent only on the effective area S [mm²] of the exhaust circuit and the piston area A [mm²]. Balancing velocity = 1.9 x 10⁵ x (*S*/A) [mm/s] is estimated with this formula.

Note) These definitions are harmonized with SMC "Model Selection Software".

Air Cylinders' Drive System Full Stroke Time & Stroke End Velocity

C	J2	Series	Bore si	ze: Ø6, Ø10, Ø16
		olicable model		
Silencer	Tubing	Solenoid valve (2 position)	Speed controller	Full stroke time (sec) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
AN120 -M5 AN120 -M3	TU0425	SY3120-M5 SYJ3120-M3 VQD1121-M5	AS1201F -M5-04 AS1200 -M5	Ø 6 10% 30% 50% 70% 60 70% 30% 10% 30 50% 10% 15 30 15 0 0 0
AN120 -M5	TU0425	SY3120-M5 SYJ512⊡-M5 VQZ1120-M5	AS1201F -M5-04 AS1200 -M5	Ø10 75 ((uuu) ayous 25 50 0
AN120 -M5	TU0425	SY3120-M5 SYJ512⊡-M5 VQZ1120-M5	AS1201F -M5-04 AS1200 -M5	Ø16
Silencer	Tubing	Solenoid valve (2 position)	Speed controller	0 100 200 300 400 500 600 700 800 900 1000 Stroke end velocity (mm/s)
	Ap	olicable model		Stroke end velocity (mm/s)

For details corresponding to each various condition, make the use of "Model Selection Software" on SMC website for your decision.

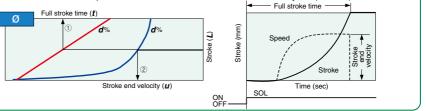
How to Read the Graph

This graph shows the full stroke time and stroke end velocity when a cylinder drive system is composed of the most suitable equipment.

As the graph shown at right, various load ratio and full stroke time which corresponds to stroke and terminal velocity are indicated for every cylinder bore size.

Conditions

_	
Pressure	0.5 MPa
Piping length	1 m
Cylinder orientation	Vertically upward
Speed controller	Meter-out, connected with cylinder directly, needle fully opened
Load factor	((Load mass x 9.8)/Theoretical output) x 100%


CM2 Series/Bore size: Ø20, Ø25, Ø32, Ø40

	Арг	olicable model		
Silencer	Tubing	Solenoid valve (2 position)	Speed controller	Full stroke time (sec) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
AN120 -M5	TU0425	SY3120-M5 SYJ5120-M5 VQ1160-M5	AS2201F -01-04 AS2200 -01	Ø20 10% 30% 50% 70% 200 150 ((((u))) 90 ((u))) 90 ((u)) 90 ((u)) 90 ((u))) 90 ((u))
AN120 -M5	TU0425	SY3120-M5 SYJ5120-M5 VQ1160-M5	AS2201F -01-04 AS2200 -01	Ø25
ANB1 -01 AN101 -01	TU0604	SY5120-01 SX5120-01	AS2201F -01-06 AS2200 -01	Ø32
ANB1 -01 AN101 -01	TU0604	SY5120-01 SX5120-01	AS2201F -02-06 AS2200 -02	Ø40
Silencer	Tubing	Solenoid valve (2 position)	Speed controller	0 100 200 300 400 500 600 700 800 900 1000 Stroke end velocity (mm/s)
	App	olicable model	_	

For details corresponding to each various condition, make the use of "Model Selection Software" on SMC website for your decision.

Example

When the cylinder bore size is $\boldsymbol{\varphi}$, its stroke is \boldsymbol{L} , and load ratio is \boldsymbol{d}^{\otimes} , full stroke time \boldsymbol{t} is obtained, as an arrow mark (1), by reading the value on the abscissa over the point at which the ordinate L hits the full stroke line (red line) of d^{∞} . Terminal velocity u is obtained, as an arrow mark 2), by reading the value on the abscissa below the point at which the ordinate L hits the terminal velocity line (blue line) of d%.

Air Cylinders' Drive System Full Stroke Time & Stroke End Velocity

C	Q2	Series	/Bore s	size: Ø12, Ø16, Ø20
		olicable model		
Silencer	Tubing	Solenoid valve (2 position)	Speed controller	Full stroke time (sec) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
AN120 -M5	TU0425	SY3120-M5 SYJ5120-M5 VQ1160-M5	AS1201F -M5-04 AS1200 -M5	Ø 12 10% 30% 50% 70% 20 70% 50% 30% 10% 15 ((uu) ayout 5 5 00 0
AN120 -M5	TU0425	SY3120-M5 SYJ5120-M5 VQ1160-M5	AS1201F -M5-04 AS1200 -M5	Ø16
AN120 -M5	TU0425	SY3120-M5 SYJ5120-M5 VQ1160-M5	AS1201F -M5-04 AS1200 -M5	Ø20 40 20 90015 10 10 0
Silencer	Tubing	Solenoid valve (2 position)	Speed controller	0 100 200 300 400 500 600 700 800 900 1000 Stroke end velocity (mm/s)
	Ap	olicable model		

For details corresponding to each various condition, make the use of "Model Selection Software" on SMC website for your decision.

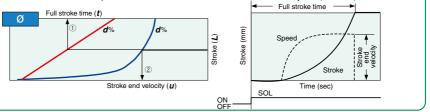
How to Read the Graph

This graph shows the full stroke time and stroke end velocity when a cylinder drive system is composed of the most suitable equipment.

As the graph shown at right, various load ratio and full stroke time which corresponds to stroke and terminal velocity are indicated for every cylinder bore size.

Conditions

Pressure	0.5 MPa
Piping length	1 m
Cylinder orientation	Vertically upward
Speed controller	Meter-out, connected with cylinder directly, needle fully opened
Load factor	((Load mass x 9.8)/Theoretical output) x 100%


-02

С	Q2	Series	/Bore s	size: Ø 25, Ø 32
	App	olicable model		
Silencer	Tubing	Solenoid valve (2 position)	Speed controller	Full stroke time (sec) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
AN120 -M5	TU0425	SY3120-M5 SYJ5120-M5 VQ1160-M5	AS1201F -M5-04 AS1200 -M5	$ \underbrace{025}_{0\%} \underbrace{10\%}_{0\%} \underbrace{30\%}_{0\%} \underbrace{50\%}_{0\%} \underbrace{70\%}_{0\%} \underbrace{40}_{0\%} \underbrace{30\%}_{0\%} \underbrace{10\%}_{0\%} 10$
AN120 -M5	TU0604	SY3120-M5 SYJ5120-M5 VQ1160-M5	AS2201F -01-06 AS2200 -01	Ø 32
Silencer	Tubing	Solenoid valve (2 position)	Speed controller	0 100 200 300 400 500 600 700 800 900 1000 Stroke end velocity (mm/s)
	Ар	olicable model		

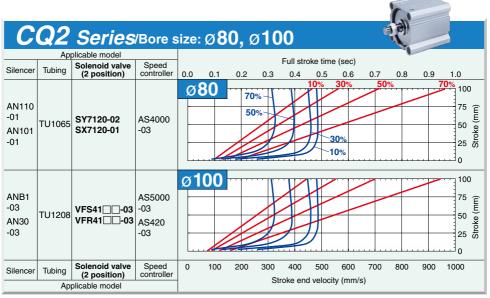
For details corresponding to each various condition, make the use of "Model Selection Software" on SMC website for your decision.

When the cylinder bore size is $\boldsymbol{\sigma}$, its stroke is \boldsymbol{L} , and load ratio is \boldsymbol{d} %, full stroke time \boldsymbol{t} is obtained, as an arrow mark (1), by reading the value on the abscissa over the point at which the ordinate \boldsymbol{L} hits the full stroke line (red line) of \boldsymbol{d} %. Terminal velocity \boldsymbol{u} is obtained, as an arrow mark (2), by reading the value on the abscissa below the point at which the ordinate \boldsymbol{L} hits the terminal velocity line (blue line) of \boldsymbol{d} %.

Air Cylinders' Drive System Full Stroke Time & Stroke End Velocity

C	Q2	Series	/Bore s	size: Ø40, Ø50, Ø63
		licable model		Full stroke time (sec)
Silencer	Tubing	Solenoid valve (2 position)	Speed controller	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
AN101 -01	TU0604	SY5120-01	AS2201F -01-06 AS2200 -01	$ \underbrace{ \bigcirc 40}_{50\%} \underbrace{ \begin{array}{c} 10\% \\ 50\% \\ 50\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 0 \end{array} } \underbrace{ \begin{array}{c} 70\% \\ 75\% \\ 25\% \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
AN101 -01	TU0604	SY5120-01	AS2201F -02-06 AS2200 -02	Ø50
AN101 -01	TU0805	SY5120-01	AS3201F -02-08 AS3000 -02	Ø63
Silencer	Tubing	Solenoid valve (2 position)	Speed controller	0 100 200 300 400 500 600 700 800 900 1000
	Ар	plicable model		Stroke end velocity (mm/s)

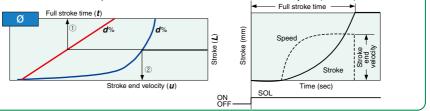
For details corresponding to each various condition, make the use of "Model Selection Software" on SMC website for your decision.


How to Read the Graph

This graph shows the full stroke time and stroke end velocity when a cylinder drive system is composed of the most suitable equipment.

As the graph shown at right, various load ratio and full stroke time which corresponds to stroke and terminal velocity are indicated for every cylinder bore size.

Conditions


Pressure	0.5 MPa
Piping length	2 m
Cylinder orientation	Vertically upward
Speed controller	Meter-out, connected with cylinder directly, needle fully opened
Load factor	((Load mass x 9.8)/Theoretical output) x 100%

For details corresponding to each various condition, make the use of "Model Selection Software" on SMC website for your decision.

When the cylinder bore size is $\boldsymbol{ø}$, its stroke is \boldsymbol{L} , and load ratio is \boldsymbol{d} %, full stroke time \boldsymbol{t} is obtained, as an arrow mark (1), by reading the value on the abscissa over the point at which the ordinate \boldsymbol{L} hits the full stroke line (red line) of \boldsymbol{d} %. Terminal velocity \boldsymbol{u} is obtained, as an arrow mark (2), by reading the value on the abscissa below the point at which the ordinate \boldsymbol{L} hits the terminal velocity line (blue line) of \boldsymbol{d} %.

Air Cylinders' Drive System Full Stroke Time & Stroke End Velocity

Μ	Bs	Series/B	ore siz	e Ø 32 , Ø40, Ø50		
		licable model				
Silencer	Tubing	Solenoid valve (2 position)	Speed controller	Full stroke time (sec) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0		
ANB1 -01 AN101 -01	TU0604	SY5120-01 SX5120-01	AS2201F -01-06 AS2200 -01	Ø32 10% 30% 50% 70% 400 200 g g g g g g g g g g g g g g g g g		
ANB1 -01 AN101 -01	TU0604	SY5120-01 SX5120-01	AS2201F -02-06 AS2200 -02	Ø40		
ANB1 -01 AN101 -01	TU0805	SY5120-01 SX5120-01	AS3201F -02-08 AS3000 -02	Ø50		
Silencer	Tubing	Solenoid valve	Speed controller	0 100 200 300 400 500 600 700 800 900 1000		
	(2 position) controller			Stroke end velocity (mm/s)		
Applicable model						

For details corresponding to each various condition, make the use of "Model Selection Software" on SMC website for your decision.

How to Read the Graph

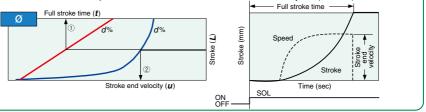
This graph shows the full stroke time and stroke end velocity when a cylinder drive system is composed of the most suitable equipment.

As the graph shown at right, various load ratio and full stroke time which corresponds to stroke and terminal velocity are indicated for every cylinder bore size.

Conditions

Pressure	0.5 MPa	
Piping length	2 m	
Cylinder orientation	Vertically upward	
Speed controller	Meter-out, connected with cylinder directly, needle fully opened	
Load factor	((Load mass x 9.8)/Theoretical output) x 100%	

...



М	Bs	Series/B	ore siz	e: Ø63, Ø80, Ø100
		plicable model		
Silencer	Tubing	Solenoid valve (2 position)	Speed controller	Full stroke time (sec) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
AN110 -01 AN101 -01	TU1065	SY7120-02 SX7120-02	AS4000 -03	Ø63 10% 30% 50% 70% 400 300 (uuu) 99 200 99 100 35 0 100 100 100 100 100 100 100 100 100 1
ANB1 -02 AN20 -02	TU1065	VFS31□□-02 VFR31□□-02	AS5000 -02 AS420 -02	Ø80 0 0 0 0 0 0 0 0 0 0 0 0 0
ANB1 -03 AN30 -03	TU1208	VFS41□□-03 VFR41□□-03	AS5000 -03 AS420 -03	Ø 100 300 (mu) 300 300 (mu) 300 (mu) 30
Silencer	Tubing	Solenoid valve (2 position)	Speed controller	0 100 200 300 400 500 600 700 800 900 1000 Stroke end velocity (mm/s)
Applicable model				

For details corresponding to each various condition, make the use of "Model Selection Software" on SMC website for your decision.

Example

When the cylinder bore size is $\boldsymbol{\sigma}$, its stroke is \boldsymbol{L} , and load ratio is \boldsymbol{d} %, full stroke time \boldsymbol{t} is obtained, as an arrow mark $\widehat{\mathbb{O}}$, by reading the value on the abscissa over the point at which the ordinate \boldsymbol{L} hits the full stroke line (red line) of \boldsymbol{d} %. Terminal velocity \boldsymbol{u} is obtained, as an arrow mark $\widehat{\mathbb{O}}$, by reading the value on the abscissa below the point at which the ordinate \boldsymbol{L} hits the terminal velocity line (blue line) of \boldsymbol{d} %.

Air Cylinders' Drive System Full Stroke Time & Stroke End Velocity

C	S1,	CS2 s	Serie	S/Bore size: Ø125, Ø140, Ø160
_		olicable model		
Silencer	Tubing	Solenoid valve (2 position)	Speed controller	Full stroke time (sec) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
ANB1 -03 AN30 -03	SGP10A	VFR3100-03 VEX3320-03	AS420 -02 AS5000 -02	Ø 125 10% 30% 50% 70% 70% 50% 30% 000 000 (EU 200 g 200 g 0 0
ANB1 -03 AN30 -03	SGP10A	VFR3100-03 VEX3320-03	AS420 -03 AS5000 -03	Ø 140 800 (uu) avoid 200 so 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ANB1 -04 AN40 -04	SGP10A	VFR4100-04 VEX3320-04	AS420 -03	Ø 160
Silencer	Tubing	Solenoid valve (2 position)	Speed controller	0 50 100 150 200 250 300 350 400 450 500
	Applicable model			Stroke end velocity (mm/s)

For details corresponding to each various condition, make the use of "Model Selection Software" on SMC website for your decision.

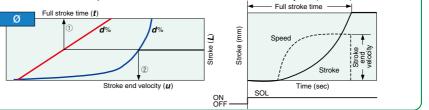
How to Read the Graph

This graph shows the full stroke time and stroke end velocity when a cylinder drive system is composed of the most suitable equipment.

As the graph shown at right, various load ratio and full stroke time which corresponds to stroke and terminal velocity are indicated for every cylinder bore size.

Conditions

Pressure	0.5 MPa	
Piping length	3 m	
Cylinder orientation	Vertically upward	
Speed controller	Meter-out, connected with cylinder directly, needle fully opened	
Load factor	((Load mass x 9.8)/Theoretical output) x 100%	



		olicable model		e: ø180, ø200, ø250, ø300 🦋
Silencer	Tubing	Solenoid valve (2 position)	Speed controller	Full stroke time (sec) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
ANB1 -04 AN40 -04	SGP15A	VEX3500-04 VP3145-03	AS420 -03	Ø180 10% 30% 50% 70% 70% 50% 30% 10% 000 (fill 000 (fill 00
ANB1 -04 AN40 -04	SGP15A	VEX3500-04 VP3145-03	AS420 -04	Ø 200
ANB1 -06 AN500 -06	SGP20A	VEX3500-06 VP3145-04	AS600 -10	Ø250
ANB1 -10 AN600 -10	SGP20A	VEX3500-10 VP3145-06	AS600 -10	
Silencer	Tubina	Solenoid valve (2 position)	Speed controller	0 50 100 150 200 250 300 350 400 450 500

For details corresponding to each various condition, make the use of "Model Selection Software" on SMC website for your decision.

Example

When the cylinder bore size is $\boldsymbol{\sigma}$, its stroke is \boldsymbol{L} , and load ratio is \boldsymbol{d}^{\otimes} , full stroke time \boldsymbol{t} is obtained, as an arrow mark \bigcirc , by reading the value on the abscissa over the point at which the ordinate \boldsymbol{L} hits the full stroke line (red line) of \boldsymbol{d}^{\otimes} . Terminal velocity \boldsymbol{u} is obtained, as an arrow mark \bigcirc , by reading the value on the abscissa below the point at which the ordinate \boldsymbol{L} hits the full stroke line (ine) of \boldsymbol{d}^{\otimes} .

⊘SMC

Best Pneumatics

2.	

Technical Data 1: Bore Size Selection P.1898

①Double Acting Cylinder	P.1898
2 Single Acting Cylinder	P.1899
3Cushion	P.1901

Technical Data 2: Air Consumption and Required Air Volume P.1902

①Air Consumption	P.1902
②Required Air Volume	P.1902

Technical Data 3: Theoretical Output Table --- P.1903

Applicable Cylinders/CJ2, CM2, CG1, CA2, MB, CS1, CS2 Series P.1903

Technical Data 4: Condensation P.1904

Technical Data 1: Bore Size Selection

Data 1 Bore Size Selection

1 Double Acting Cylinder

The relation of cylinder force, bore size and operating pressure is the following.

Formula

- F2: Cylinder force at retraction side [N]
- n: Load ratio
- A₁: Piston area at extension side $[mm^2] \rightarrow Refer to "Table (1)".$
- A2: Piston area at retraction side $[mm^2] \rightarrow Refer to "Table (1)".$
- P: Operating pressure [MPa]
- P: Operating pressure [MPa]
- Note) As shown in the diagram below, the pressure receiving area on the retraction side of the double acting single rod cylinder is reduced by the amount of the cross sectional area of the piston rod.

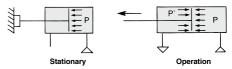


Table (1) Cylinder Piston Area

		D: 1 .	D ¹ 1
Bore size D [mm]	Piston rod size d [mm]	Piston area at extension side A1 [mm ²]	Piston area at retraction side A2 [mm ²]
4 (CJ1)	2	12.6	9.4
6	3	28.3	21.2
8	5	50.3	30.6
10	4	78.5	66.0
10	6	113	84.8
12	5	201	181
16	6 (CJP2)	201	173
10	8 (CQ2)	201	151
	8	314	264
20	0 10 (CQ2)	314	264
	10 (002)	491	412
25	-	491	378
	12 (CQ2) 12	804	691
32	16 (CQ2)	804	603
	16 (CQ2) 14 (CM2)	1260	1100
40	16 (CA, CQ2, CG)	1260	1060
50	20	1960	1650
63	20	3120	2800
80	20	5030	4540
100	30	7850	7150
	32 (CS2)	12300	11500
125	36	12300	11300
	32 (CS2)	15400	14600
140	36	15400	14600
	38 (CS2)	20100	19000
160	40	20100	18800
	40 (CQ2)	25400	24200
180	40 (002)	25400	23900
	40 (CQ2)	31400	30200
200	50	31400	29500
250	60	49100	46300
300	70	70700	66800
300	10	10100	00000

Load ratio n

In selecting a cylinder, do not forget that in addition to the load, there are many forces that act upon the cylinder. Even in the stationary state shown in the diagram below, the resistances of the seals and the bearings in the cylinder must be subtracted. Furthermore, during operation, recoil due to the exhaust pressure also come into play.

These forces that act against the cylinder vary according to the conditions of the cylinder such as its size, pressure, and speed. Therefore, it is recommended to always select a cylinder of a larger size. Thus, select an air cylinder so that the load factor, which is a factor that is used in the selection process, will be as shown below. 1) To use a cylinder for stationary operations:

- load factor $\eta = 0.7$ or below (Fig.1)
- 2) To use a cylinder for dynamic operations:
- load factor $\eta = 0.5$ or below (Fig.2)
- 3) To use a cylinder with a guide for horizontal operations: load factor $\eta = 1$ or below (Fig. 3)

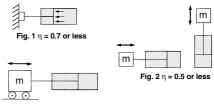


Fig. 3 η = 1 or less

Note) If a dynamic high-speed operation is particularly needed, further reduce the load factor. Then, the cylinder will have power to spare for the amount by which the load factor has been reduced, which will make it easier to produce speed.

Meanwhile, a cylinder force that has been calculated by multiplying only the operating pressure by the pressure receiving area, assuming that no resistance exists in the cylinder, is called a "theoretical output". For details about the theoretical output, refer to Data 3, page 1903.

Bore Size Selection

2 Single Acting Cylinder

1. Single acting, Spring return type Formula

- $F_1 = \eta x (A_1 x P f_2) \dots (3)$ $F_2 = \eta \times f_1$ (4)
- F1: Cylinder force at extension side [N]
- F2: Cylinder force at retraction side [N]
- η: Load ratio (Same as double acting type cylinder. Refer to page 1898.)
- A1: Piston area at extension side [mm²]
- P: Operating pressure [MPa]
- f2: Spring reaction force (Outlet) [N] \rightarrow Refer to "Table (2)".
- f1: Spring reaction force (Inlet) $[N] \rightarrow \text{Refer to "Table (2)"}$.
- Note) Avoid applying a load on the cylinder as much as possible, because the value of the output force of a cylinder at the retraction side could be small.

Table (2) Spring Reaction Force/Single Acting

		(N)	
Bore size	Spring reaction force (N)		
(mm)	Outlet	Inlet	
2.5	1.13	0.64	
4	3.04	1.47	
4	2.80	1.00	
6	3.92	1.42	
10	5.98	2.45	
15	10.8	4.41	
6	3.72	1.77	
10	6.86	3.53	
16	14.2	6.86	
	(mm) 2.5 4 4 6 10 15 6 10	Outlet 2.5 1.13 4 3.04 4 2.80 6 3.92 10 5.98 15 10.8 6 3.72 10 6.86	

* Use the same spring for the spring return type * CVJ3; ø10, ø16 only,

Note) The spring reaction force is the same for each standard stroke.

CQ2 Series/Single Acting, Spring Return (N)						
Bore size	Stroke	Spring react	ion force (N)			
(mm)	(mm)	Outlet	Inlet			
40	5	13	8.6			
12	10	13	3.9			
40	5	15	10.3			
16	10	15	5.9			
	5	15	10			
20	10	15	5.9			
	5	20	16			
25	10	20	11			
	5	30	23			
32	10	30	16			
	5	30	13			
40	10	39	21			
	10	50	30			
50	20	54	24			

2. Single acting, Spring extend type Formula $F_1 = \eta \times f_1$(5) $F_2 = \eta \times (A_2 \times P - f_2)$(6)

Note) Avoid loading the cylinder since the cylinder force at the extension side is a small value.

CQ2 Series/Single Acting, Spring Extend (N)

Bore size	Stroke	Spring reaction force (N	
(mm)	(mm)	Outlet	Inlet
40	5	11	2.9
12	10	9.7	2.8
16	5	20	3.9
10	10	20	3.9
20	5	27	5.3
20	10	27	5.9
05	5	29	9.8
25	10	29	9.8
32	5	29	20
32	10	29	20
40	5	29	20
40	10	29	20
50	10	83	24
50	20	83	24

1. Single acting, Spring return

Spring in pre-loaded Spring of outlet

mounting load

When the spring is set in the cylinder

When the spring is contracted by supplying air

2. Single acting, Spring extend

Spring in pre-loaded condition

Spring of outlet mounting load

When the spring is set in the cylinder

When the spring is contracted by supplying air

A2: Piston area at retraction side [mm²]

Technical Data 1: Bore Size Selection

Data 1 Bore Size Selection

Table (3) Spring Reaction Force/Single Acting

CU Series/Single Acting, Spring Return (N)			
Bore size	Stroke	Spring reaction force (N)	
(mm)	(mm)	Outlet	Inlet
	5	3.5	2.9
6	10	3.5	2.2
	15	3.5	1.6
	5	6.9	5.0
10	10	6.9	3.0
	15	6.9	3.3
	5	14.7	10.3
16	10	14.7	5.9
	15	14.7	9.3
	5	15	11
20	10	15	6
	15	21	10
	5	21	16
25	10	21	11
	15	28	14
	5	30	26
32	10	30	16
	15	34	17

* Use the same spring for the spring return type.

CVM3 Series

CM2 Serie			(N
Bore size	Stroke	Spring reaction force (N	
(mm)	(mm)	Outlet	Inlet
	25		24
	50	39	7.8
20	75		17
20	100		9.8
	125		14
	150		8.8
	25		30
	50		14
25	75	47	25
25	100	47	17
	125		21
	150		16
	25		41
	50		15
	75	1	31
32	100	67	20
32	125		26
	150		18
	175		25
	200		20
	25		50
	50		24
	75		36
	100		24
40	125	70	32
40	150	76	24
	175		30
	200		24
	225	1	29
	250	1	24

CG1 Serie	s		(N)
Bore size	Stroke	Spring reaction force (N)	
(mm)	(mm)	Outlet	Inlet
	25		24
	50		7.8
20	75	39	17
	100		9.8
	125]	14
	25		30
	50	1	14
	75		24
25	100	47	17
	125		21
	150		24
	200		17
	25		40
	50	1	15
	75	1	31
32	100	67	20
	125]	25
	150	1	31
	200		20
	25		50
	50]	24
	75]	36
40	100	76	24
	125		32
	150		36
	200]	24

1. Single acting, Spring return

Spring in pre-loaded Spring of outlet condition

When the spring is set in the cylinder

mounting load

When the spring is contracted by supplying air

2. Single acting, Spring extend

Spring in pre-loaded condition

OUT

When the spring is set in the cylinder

When the spring is contracted by supplying air

Bore Size Selection

3 Cushion

When a load that is operated by a cylinder must be stopped at the end of the stroke, the piston in the cylinder will collide with the cover unless an external stopper is provided. A built-in function that cushions the impact and the sound that are generated at this time is the cushion mechanism.

There are two types in the cushion mechanism as below.

- Rubber bumper: Dampens the impact sound and prevents the installation area from becoming loosened or damaged by the impact.
- Air cushion: Similar to a rubber bumper, but achieves a higher level of effectiveness. It cushions the vibrations that are generated by collision.

Note) Depending on the model of the cylinder, it might not be possible to have either of the above two cushions built into the cylinder.

Even if the one of the cushion mechanisms described above is used for stopping a load, it might not be possible to completely absorb the impact if the kinetic energy of he load is too large. Therefore, be careful of overloading or excessive speed.

The kinetic energy of a load can be expressed by the formula given below.

Formula

- m: Load mass [kg]
- III. LUAU IIIASS [Kg]
- V: Max. piston speed [m/s]

Kinetic energy absorbable by the cushion mechanism is the table at right. When the values are exceeded, following countermeasures are required like using a bigger bore size cylinder or mounting an external stopper, etc.

CQ2 Series

Bore size	Allowable kinetic energy (J)		
(mm)	Standard type	With rubber bumper	
12	0.022	0.043	
16	0.038	0.075	
20	0.055	0.11	
25	0.09	0.18	
32	0.15	0.29	
40	0.26	0.52	
50	0.46	0.91	
63	0.77	1.54	
80	1.36	2.71	
100	2.27	4.54	

RQ Series

Bore size (mm)	Effective cushion length (mm)	Kinetic energy absorbable (J)
20	5.8	0.40
25	6.1	0.63
32	6.6	1.00
40	6.6	1.60
50	7.1	2.50
63	7.0	4.00
80	7.5	6.40
100	8.0	10.00

Kinetic Energy Absorbable by the Cushion Mechanism

Davis since	Rubber bumper	Air cushion	
Bore size (mm) Allowable kinetic ene (J)		Effective cushion length (mm)	Kinetic energy absorbable (J)
6	0.012	—	—
10	0.035	9.4	0.07
16	0.090	9.4	0.18

CM2 Series

	Rubber bumper	Air cushion	
Bore size	Allowable kinetic energy	Effective cushion length	Kinetic energy absorbable
(mm)	(J)	(mm)	(J)
20	0.27	11.0	0.54
25	0.4	11.0	0.78
32	0.65	11.0	1.27
40	1.2	11.8	2.35

CG1 Series

Bore size Rubber bumper		Air cushion	
(mm)	Allowable kinetic energy	Effective cushion length	Kinetic energy absorbable
((((((((((((((((((((((((((((((((((((((((J)	(mm)	(J)
20	0.28	R: 7.0, H: 7.5	R: 0.35, H: 0.42
25	0.41	R: 7.0, H: 7.5	R: 0.56, H: 0.65
32	0.66	7.5	0.91
40	1.2	8.7	1.8
50	2.0	11.8	3.4
63	3.4	11.8	4.9
80	5.9	17.3	11.8
100	9.9	15.8	16.7
P: Pod side H: Hoad side			

CA2, CS1, CS2 Series

Bore size	Effective cushion length	Kinetic energy absorbable
(mm)	(mm)	(J)
40	15.0	2.8
50	15.0	4.6
63	15.0	7.8
80	24.0	16
100	29.0	29
125	21.0	32.3
140	21.0	44.6
160	21.0	58.8
180	22.5	78.4
200	22.5	98.0
250	28.5	147
300	28.5	265

MB Series

Bore size	Effective cushion length	Kinetic energy absorbable
(mm)	(mm)	(J)
32	18.8	2.2
40	18.8	3.4
50	21.3	5.9
63	21.3	11
80	30.3	20
100	29.3	29
125	R: 31.4 H: 29.4	45

Technic Data

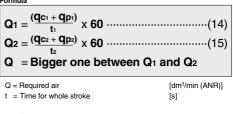
Technical Data 2: Air Consumption and Required Air Volume

Data 2 Air Consumption and Required Air Volume

The air consumption is the volume of air that is consumed in the cylinder or in the piping between the cylinder and the switching valve during the reciprocal movement of an air cylinder. It is necessary for selecting a compressor and for calculating the running cost. The required air volume is the volume of air that is required for operating the cylinder at a specified speed, and it is necessary for selecting the diameter of the piping upstream from switching valve or the FRL equipment.

1. Air Consumption

$\mathbf{qc1} = \mathbf{A}_1 \times \mathbf{L} \times \frac{(\mathbf{P}_1 + 0.1)}{0.1} \times 10^{-6} \cdots$	
$\mathbf{qc2} = \mathbf{A}_2 \times \mathbf{L} \times \frac{(\mathbf{P}_2 + 0.1)}{0.1} \times 10^{-6} \cdots$	
\mathbf{q} p1 = a ₁ x ℓ_1 x $\frac{\mathbf{P}_1}{0.1}$ x 10 ⁻⁶	
$\mathbf{q}\mathbf{p}2 = \mathbf{a}_2 \times \ell_2 \times \frac{\mathbf{P}_2}{0.1} \times 10^{-6}$	(11)
Double acting cylinder	
$\mathbf{q} = \mathbf{q}\mathbf{c}_1 + \mathbf{q}\mathbf{p}_1 + \mathbf{q}\mathbf{c}_2 + \mathbf{q}\mathbf{p}_2 \cdot \mathbf{q}_2$	(12)
Single acting type cylinder	
$\mathbf{q} = \mathbf{q}\mathbf{c}_1 + \mathbf{q}\mathbf{p}_1$	(13)
qc = Air consumption of air cylinder	[dm ³ (ANR
a Air concumption of tubing or piping	Labora 3 (A N ID


qc =	Air consumption of air cylinder	[dm° (ANR)]
qp =	Air consumption of tubing or piping	[dm ³ (ANR)]
q =	Air consumption required for one stroke of air cylinder	[dm ³ (ANR)]
A =	Piston area at extension side	[mm ²]
L =	Cylinder stroke	[mm]
P =	Operating pressure	[MPa]
<i>l</i> =	Piping length	[mm]
a =	Piping internal sectional area	[mm ²]

Subscript 1: Extension side Subscript 2: Retraction side

Internal Sectional Area of Tubing and Steel Piping

		rabing and blobin iping					
Nominal size	O.D. (mm)	I.D. (mm)	Internal sectional area a (mm ²)				
T□0425	4	2.5	4.9				
T□0604	6	4	12.6				
TU0805	8	5	19.6				
T□0806	8	6	28.3				
1/8B	_	6.5	33.2				
T□1075	10	7.5	44.2				
TU1208	12	8	50.3				
T□1209	12	9	63.6				
1/4B	—	9.2	66.5				
TS1612	16	12	113				
3/8B	—	12.7	127				
T□1613	16	13	133				
1/2B	_	16.1	204				
3/4B	_	21.6	366				
1B	—	27.6	598				

2. Required Air Volume

Subscript 1: Extension side Subscript 2: Retraction side

For calculating the volume of air consumption and required air in accordance with each condition, please make use of our "Equipment Selection Program" and "Energy Saving Program".

Technical Data 3: Theoretical Output Table Data 3 Theoretical Output												
Applicable cylinder: CJ2, CM2, CG1, CA2, MB, CS1, CS2 Series												s
CJ2 Series $CM2$ Series $CG1$ Series $CA2$ Series MB Series $(\sigma 20 \text{ to } \sigma 40)$ $(\sigma 20 \text{ to } \sigma 100)$ $(\sigma 40 \text{ to } \sigma 100)$ $(\sigma 32 \text{ to } \sigma 125)$ $(\sigma 125 \text{ to } \sigma 300)$ $(\sigma 22 \text{ to } \sigma 160)$												
		Cylinde	,	our be calculo	act using the bi					ουτ 🗌	-	- IN (N)
Bore size		Operating	Piston area				Opera	ating pressure	MPa)			(14)
(mm)	(mm)	direction	(mm ²)	0.2	0.3 8.49	0.4	0.5	0.6	0.7	0.8	0.9	1.0
6	3	OUT IN	28.3 21.2	5.66	6.36	8.48	14.2	17.0	19.8 14.8	_	_	
10	4	OUT	78.5	15.7	23.6	31.4	39.3	47.1	55.0	-	-	-
10	4	IN OUT	66.0 201	13.2 40.2	19.8 60.3	26.4 80.4	33.0 101	39.6 121	46.2	-	-	-
16	5	IN	181	40.2	54.3	80.4	90.5	121	141	_		
20	8	OUT	314	62.8	94.2	126	157	188	220	251	283	314
20	, v	IN	264	52.8	79.2	106	132	158	185	211	238	264
25	10	OUT IN	491 412	98.2 82.4	147	196 165	246	295 247	344 288	393 330	442 371	491 412
32	12	OUT	804	161	241	322	402	482	563	643	724	804
- 02	12	IN OUT	691 1260	138 252	207 378	276 504	346 630	415 756	484 882	553 1010	622 1130	691 1260
	14	IN	1260	252	378	440	550	660	770	880	990	1100
40	16	OUT	1260	252	378	504	630	756	882	1010	1130	1260
		IN OUT	1060 1960	212 392	318 588	424 784	530 980	636 1180	742	848 1570	954 1760	1060 1960
50	20		1650	330	495	660	825	990	1160	1320	1490	1650
63	20	OUT	3120	624	936	1250	1560	1870	2180	2500	2810	3120
		IN OUT	2800 5030	560 1010	840 1510	1120 2010	1400 2520	1680 3020	1960 3520	2240 4020	2520 4530	2800 5030
80	25		4540	908	1360	1820	2270	2720	3180	3630	4090	4540
100	30	OUT	7850	1570	2360	3140	3930	4710	5500	6280	7070	7850
100		IN OUT	7150 12300	1430 2460	2150 3690	2860 4920	3580 6150	4290 7380	5010 8610	5720 9840	6440 11100	7150 12300
125	32	IN	11500	2300	3450	4600	5750	6900	8050	9200	10400	11500
125	36	OUT	12300	2460	3690	4920	6150	7380	8610	9840	11100	12300
		IN OUT	11300 15400	2260 3080	3390 4620	4520 6160	5650 7700	6780 9240	7910 10800	9040 12300	10200 13900	11300 15400
140	32	IN	14600	2920	4380	5840	7300	8760	10200	11700	13100	14600
140	36	OUT	15400	3080	4620	6160	7700	9240	10800	12300	13900	15400
		IN OUT	14400 20100	2880 4020	4320 6030	5760 8040	7200	8640 12100	10100 14100	11500 16100	13000 18100	14400 20100
400	38	IN	19000	3800	5700	7600	9500	11400	13300	15200	17100	19000

;	Single	Acting,	Spring	Return C	ylinder	
	300	70	IN	66800	13400	

IN

OUT IN

OUT

IN

OUT IN OUT

IN

OUT

18800

49100 46300

3760

4780

9820

14700 13900

18500

29500 27800

10100 9400

13200

34400 32400

15000

19100

39300 37000

44200 41700

23900

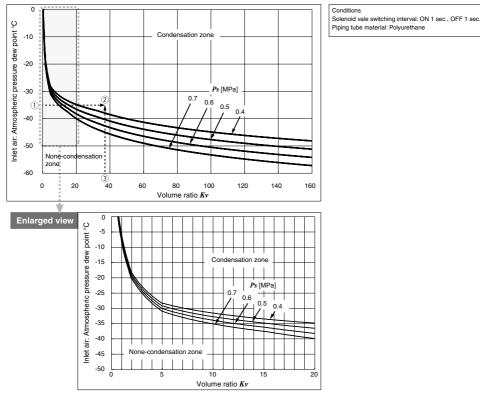
46300

(N)

Bore size	Rod size	Operating	Piston area	Operating pressure (MPa)								
(mm)	(mm)	direction	(mm ²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.0	10
(11111)	(1111)			-								
2.5	1	OUT	4.90	-	0.34	0.83	1.32	1.81	2.30	_	-	-
2.0		IN	-					0.64				
4		OUT	12.6	-	0.74	2.00	3.26	4.52	5.78	-	-	-
4	2	IN	-					1.47			0.9 1.0 - - <td></td>	
6	3	OUT	28.3	1.94	4.77	7.60	10.4	13.3	16.1	-	-	
0	3	IN	-					1.77			0.9 1.0 - - - - - - - - - - 244 275 395 444 657 737	
10	4	OUT	78.5	8.84	16.7	24.5	32.4	40.2	48.1	-	-	1.0 - - - - 275 444 737
10	4	IN	-					3.53				
16	5	OUT	201	26.0	46.1	66.2	86.3	106.4	126.5	-	-	-
10		IN	-					6.86				
20	8	OUT	314	23.8	55.2	87	118	149	181	212	244	275
20	0	IN	-					7.8				
25	40	OUT	491	51.2	100	149	199	248	297	346	395	
25	10	IN	-					14				
	12	OUT	804	94	174	255	335	415	496	576	657	737
32	12	IN	-				-	15				
40	14.10	OUT	1260	176	302	428	554	680	806	934	1054	1184
40	14, 16	IN	-					24				

In the case of the extension side, theoretical output of single acting cylinder is a value taken secondary mounting load of the spring off theoretical output of double acting cylinder. In the case of the retraction side, take primary mounting load of the spring.
 Avoid loading the cylinder on the retraction side.

chnical Data


Technical Data 4: Condensation

Data 4 Condensation

In pneumatic systems, the generation of waterdrops in piping may affect the equipment's operation and service life.

Thus, compressed air that is supplied is normally dehumidified by an air dryer, and is then sent to the system. However, when a compact actuator is used in order to downsize the equipment and correspond to the demand of high speed, condensation may occur and cause damage even if dehumidified air is used.

When selecting cylinders, check the generation of condensation based on the control graph below.

Condensation Control Graph

How to analyze the control graph

(1) Determine the volume ratio Kv (3). Determine the volume Kv using the following formula.

$$Kv = \frac{Vt}{Vc} \times \frac{0.1}{Ps + 0.1}$$

$$Vt: Ptping volume [cm3]$$

$$Vc: Cylinder volume [cm3]$$

$$Ps: Supply air gauge pressure [MPa]$$

(2) Determine the intersection point 2 of the atmospheric pressure dew point of supply air 1 and volume ratio $K \nu$ 3.

(3) Determine whether condensation is generated depending on where the intersection point 2 falls.

Refer to a separate catalog, "Condensation Measures of Pneumatic Systems" (Refer to the SMC website.) for the details of measures. Condensation control can also be determined based on SMC's Pneumatic Equipment Model Selection Program Ver. 3.5.

