
Trouble Check Sheet Vacuum Circuit (Ejector Module)

(5)

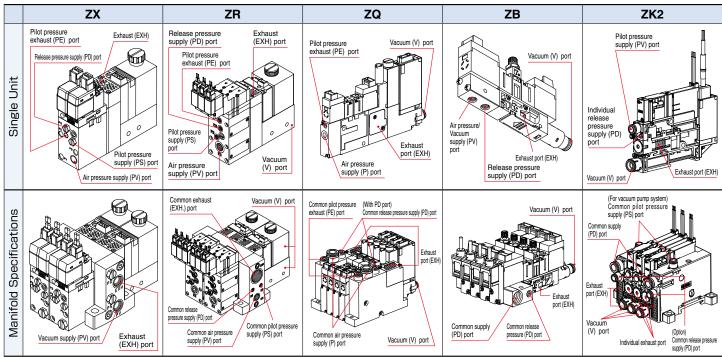
Check location	Description
1	Filter/Regulator
2	Tubing (Supply side)
3	Ejector module
4	Tubing (Vacuum side)
5	Vacuum Pad

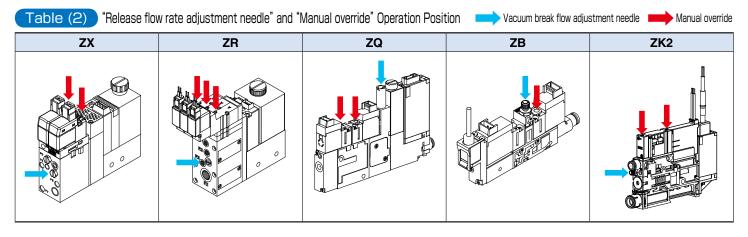
Suction flow drops

Vacuum pressure drops

н	Ot	n	<u>ם</u>	\mathbf{r}	າດ	\mathbf{c}	11	nơ
ப	CI	U	C			J	\sim	ng

Refer to Table (1), and confirm that all tubes are correctly connected to the "ejector unit."

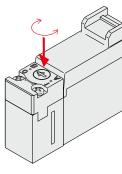

Check le	ocation	Detailed status	[Probable cause] and Actions		
		Element is dirty. Drain is over the "DRAIN LEVEL."	[Insufficient pressure and flow rates] • Replace air filter elements • Discharge drain. • Replace bowl assembly		
① Filter/Regulator		 Supply pressure is set below pressure range specification. 	[Insufficient pressure and flow rates] • Set within supply pressure range.		
		Pressure gauge is deviating abnormally.	[Insufficient pressure and flow rates] • Take measures against pulsation. • Check the size of device.		
② Supply side/Tubi	ng	□ There is bending or flattening of tubing.	[Insufficient pressure and flow rates] • Reconnect tubing • Replace tubing		
		☐ Air leaks from tube connection portion.	[Insufficient pressure and flow rates] • Reconnect tubing→ Check cut surface of tubing. • Replace tubing		
	Eiector	Silencer (exhaust) is clogged or dirty.	[Operation trouble by back pressure]→Refer to table (4) • Remove foreign (drain) objects • Replace sound absorbing material		
③ Ejector module		Nozzle or diffuser is clogged.	[Operation trouble by back pressure] · Remove foreign objects · Replace ejector assembly		
	Air suction filter	Element is clogged or dirty.	[Insufficient suction flow rate]→Refer to table (5) · Replace element		
④ Vacuum side/Tub	aing	There is bending or flattening of tubing.	[Insufficient pressure and flow rates] • Reconnect tubing. • Replace tubing		
	א ווכ	Air leaks from tube connection portion.	[Insufficient pressure and flow rates] ·Reconnect tubing→ Check cut surface of tubing. · Replace tubing		
		Vacuum pad adsorption surface has deteriorated or is worn.	[Leakage] • Replace vacuum pads		
(5) Vacuum Pad		There is leakage due to deformation of a workpiece during adsorption.	[Leakage] • Reconsider pad type • Reconsider vacuum ejector		
		Vacuum pressure deteriorates when picking up multiple workpieces. (There is leakage caused by parallel usage of vacuum pads.)	[Deterioration of pressure or flow rate due to flowing around of air] · Reconsider tubing → Vacuum saving valve Consider using (Series ZP2V).		


Refer to Table (1), and confirm that all tubes are correctly connected to the "ejector unit."

Check lo	ocation	Detailed status	[Probable cause] and Actions		
① Filter/Regulator		□ IN and OUT tubing is connected in reverse.	[Insufficient pressure and flow rates] • Reconnect tubing.		
		 Being used below the pressure range specification. 	[Insufficient pressure and flow rates] • Set within supply pressure range.		
② Supply side/Tubing		There is bending or flattening in tubing.	[Insufficient pressure and flow rates] • Reconnect tubing. • Replace tubing.		
	Valve	□ Specified power is not supplied.	[Insufficient voltage] [Broken wire]		
		Light does not turn ON with electric signal.	· Check the power supply		
		Cannot be switched by manual operation of the solenoid valve.	[Catching of foreign matter]→ Refer to table (2) • Replace solenoid valves (Valve assembly)		
③ Ejector module		PE port is plugged.	[Operation trouble caused by pilot back pressure] → Refer to table (1) • Open or attach silencer.		
		[When using ZA/ZB/ZQ series latching type]	[Not set in original position] \rightarrow Refer to table (3)		
④ Vacuum side/Tubing		There is bending or flattening of tubing.	[Insufficient pressure and flow rates] • Reconnect tubing. • Replace tubing.		

Port	Description	Application	Port	Description	Application
PV	Vacuum supply port	Supply port of compressed air for ejector operation	v	Vacuum port	Port to connect pads, etc.
PS	Pilot pressure supply port	Port which is not used in ejector system	EXH	Exhaust port	Exhaust port used during ejector operation
PD	Individual release pressure supply port	Supply port for individual setting of release pressure (Option)	PE	Pilot pressure exhaust port	Exhaust port used during valve switching operation

Table (1) Description and Application of Each Port

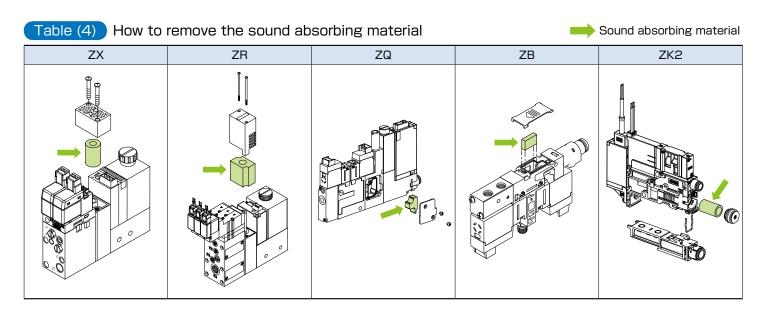

Table (3) Notes for "Latching type"

The position may have changed to the set position due to impact during transfer or mounting. Confirm the original position by supplying power or manual override before use.

Latching	Operating	Indicator light (when energized)
Set	Vacuum generation	Orange
Reset	Vacuum suspension	Green

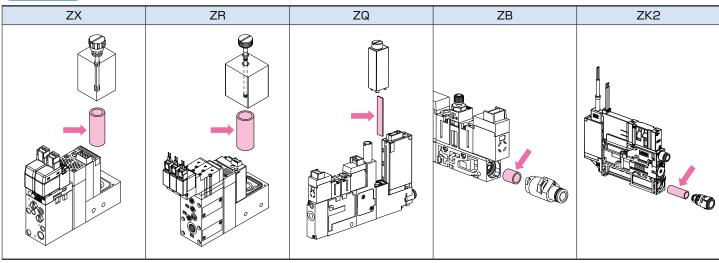
Push-lock Type (Tool required) (Latching Type)

TURN PUSH



Set Reset

When the manual override switch is turned to the right to align the \blacktriangleright mark to 1 and pushed, the switch can be locked in the set state (flow path P \rightarrow A).


TURN PUSH

When the manual override switch is turned to the left to align the \blacktriangleleft mark to 0 and pushed, the switch returns to the reset state (flow path A \rightarrow R). (Reset state when shipped)

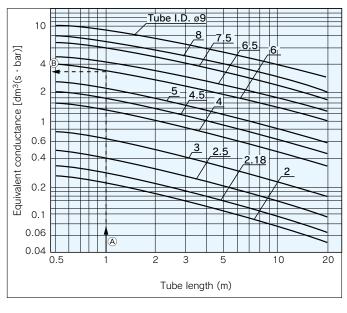


Table (5) How to remove the air suction filter

Air suction filter

Selection Graph Conductance by Tube I.D.

How to read the graph

Example: Tube size ø8/ø6 and 1 meter length

<Selection Procedure>

By extending leftward from the point at which the 1 meter tube length on the horizontal axis intersects the line for a tube I.D. \emptyset 6, the equivalent conductance of approximately 3.6 [dm3/(s·bar)] can be obtained on the vertical axis.

Equivalent conductance ≈ 3.6 [dm3/(s·bar)]

\bigcirc = Excellent --- Not affected at all, or almost no effect \bigcirc = Good --- Affected a little, but adequate resistance

depending on conditions

\triangle = Avoid usage if possible

Rubber Material	and Properties
-----------------	----------------

X = Unsuitable for usage. Severely affected.

							~	= Unsuitable	ioi usuge. Oc	verely allect	.
	General name	NBR (Nitrile rubber)	Silicone rubber	Urethane rubber	FKM (Fluoro rubber)	CR (Chloroprene rubber)	EPR (Ethylene- propylene rubber)	Conductive NBR (Nitrile rubber)	Conductive silicone rubber	Conductive silicone sponge	Conductive CR sponge (Chloroprene sponge)
	Main features	Good oil resistance, abrasion resistance, and aging resistance	Excellent heat resistance, and cold resistance	Excellent mechanical strength	Best heat resistance, and chemical resistance	Well balanced weather resistance, ozone resistance, and chemical resistance	Good aging resistance, ozone resistance, and electrical properties	Good oil resistance, abrasion resistance, and aging resistance. Conductive	Excellent heat resistance, and cold resistance. Conductive	Excellent heat insulation, and impact resilience	Excellent impact resilience, and sound insulation. Flame retardance
Pure gi	um property (specific gravity)	1.00-1.20	0.95-0.98	1.00-1.30	1.80-1.82	1.15-1.25	0.86-0.87	1.00-1.20	0.95-0.98	0.4g/cm ³	0.161g/cm ³
_	Impact resilience	0	O	O	Δ	O	0	0	O	× to \triangle	× to \triangle
Bur	Abrasion resistance	O	× to \triangle	O	O	O	0	O	× to \triangle	×	×
eq	Tear resistance	0	× to \triangle	O	0	0	\triangle	0	× to \triangle	×	×
end	Flex crack resistance	0	× to 〇	O	0	0	0	0	× to 〇	×	×
of blended gum	Maximum operation temperature °C	120	200	60	250	150	150	100	200	180	120
Physical properties	Minimum operation temperature °C	0	-30	0	0	-40	-20	0	-10	-30	-20
ber	Volume resistivity (Ωcm)	-	_	_	_	_	_	10 ⁴ or less	10 ⁴ or less	4.8 x 10 ⁴	3.8 x 10 ⁴
brd	Heat aging	0	O	\triangle	O	0	0	0	O	Δ	Δ
sica	Weather resistance	0	O	O	O	O	0	0	O	Δ	Δ
hyŝ	Ozone resistance	\triangle	O	O	O	0	O	\triangle	O	\triangle	\triangle
	Gas permeability resistance	0	× to \triangle	× to \triangle	× to \triangle	0	× to \triangle	0	× to \triangle	×	×
<u>S</u>	Gasoline/Gas oil	O	× to \triangle	O	O	0	×	O	× to \triangle	×	×
star	Benzene/Toluene	× to \triangle	×	× to \triangle	O	× to \triangle	×	× to \triangle	×	×	×
resi	Alcohol	O	O	\triangle	$ riangle$ to $ ilde{O}$	O	O	O	O	\triangle	\triangle
Chemical resistance Oil resistance	Ether	× to \triangle	× to \triangle	×	× to \triangle	× to \triangle	0	× to \triangle	× to \triangle	×	×
Oil Oil	Ketone (MEK)	×	0	×	×	\triangle to \bigcirc	O	×	0	×	×
ъ	Ethyl acetate	× to \triangle	\triangle	× to \triangle	×	× to \triangle	O	× to \triangle	\bigtriangleup	×	×
e	Water	O	0	\bigtriangleup	O	O	O	O	0	0	0
tanc	Organic acid	× to \triangle	0	×	\triangle to \bigcirc	× to \triangle	×	× to \triangle	0	×	×
resis sista	Organic acid of high concentration	\triangle to \bigcirc	\triangle	×	O	0	0	\triangle to \bigcirc	\bigtriangleup	×	×
Alkaline resistance Acid resistance	Organic acid of low concentration	0	0	\triangle	O	O	O	0	0	×	×
Aci	Strong alkali	0	O	×	0	O	O	0	O	\triangle	\triangle
4	Weak alkali	0	O	×	0	O	O	0	O	\triangle	\triangle

* The indicated physical properties, chemical resistance and other numerical values are only approximate values used for reference. They are not guaranteed values.

· The above general characteristics may change according to the working conditions and the working environment.

 \cdot When determining the material, carry out adequate confirmation and verification in advance.

· SMC will not bear responsibility concerning the accuracy of data or any damage arising from this data.

Color and Identification (ZP/ZP2)

General name	NBR (Nitrile rubber)	Silicone rubber	Urethane rubber	FKM (Fluoro rubber)	CR (Chloroprene rubber)	EPR (Ethylene- propylene rubber)	Conductive NBR (Nitrile rubber)	Conductive silicone rubber	silicone	Conductive CR sponge (Chloroprene sponge)
Color of rubber	Black	White	Brown	Black	Black	Black	Black	Black	Black	Black
Identification (Dot or stamp)		_	—	·Green 1 dot ·€	$\cdot \text{Red 1 dot}$ $\cdot \odot$	·	·Silver 1 dot	· Silver 2 dots		_
Rubber hardness	A50/S	Other than Heavy duty A40/S	A60/S	A60/S	A50/S	A50/S	A50/S	A50/S	20	15
HS (±5°)	A00/5	Heavy duty A50/S	A00/5	A00/5	A00/5	A00/5	A00/5	A00/5	20	10

Color and Identification (ZP3)

General name	NBR (Nitrile rubber)	Silicone rubber	Urethane rubber	FKM (Fluoro rubber)	Conductive NBR (Nitrile rubber)	Conductive silicone rubber		
Color of rubber	Black	White	Brown	Black	Black	Black		
Identification (Dot)	—	—	—	· Green 1 dot	· Silver 1 dot	· Pink 1 dot		
Rubber hardness HS ($\pm 5^{\circ}$)		A60/S						

Note) The hardness of rubber shall conform to JIS K 6253. The hardness of sponge shall conform to SRIS 0101.