ZK2

ZQ

7R

ZA

ZX

ZM

ZMA

ZL

ZH

711

ZYY

7YX

ZFA

7FR

ZFC

ZP3

ZP2

ZP2V

7P

ZPT ZPR

XT661

SP

ZCUK

AMJ

AMV

-X185

Related

Equipment

ZH

Vacuum Equipment Selection Example

Transfer of Semiconductor Chips

Selection conditions:

 Workpiece: Semiconductor chip

- Dimensions: 8 mm x 8 mm x 1 mm, Mass: 1 g
- (2) Vacuum piping length: 1 m
- (3) Adsorption response time: 300 msec or less

1. Vacuum Pad Selection

- (1) Based on the workpiece size, the pad diameter is 4 mm (1 pc.).
- (2) Using the formula on page 880, confirm the lifting force.

 W = P x S x 0.1 x 1/t
 (W = 1 g = 0.0098 N

 0.0098 = P x 0.13 x 0.1 x 1/4
 S = $\pi/4 x (0.4)^2 = 0.13 \text{ cm}^2$

 P = 3.0 kPa
 t = 4 (Horizontal lifting)

According to the calculation, -3.0 kPa or more of vacuum pressure can adsorb the workpiece.

(3) Based on the workpiece shape and type, select:

Pad type: Flat with groove

Pad material: Silicone rubber

(4) According to the results above, select a vacuum pad part number ZP3-04UMS.

2. Vacuum Ejector Selection

(1) Find the vacuum piping capacity.

Assuming that the tube I.D. is 2 mm, the piping capacity is as follows:

$V = \pi/4 \ge D^2 \ge L \ge 1/1000 = \pi/4 \ge 2^2 \ge 1 \ge 1/1000$

= 0.0031 L

(2) Assuming that leakage (QL) during adsorption is 0, find the average suction flow rate to meet the adsorption response time using the formula on page 884.

 $Q = (V \times 60) / T_1 + Q_L = (0.0031 \times 60) / 0.3 + 0 = 0.62 L$

From the formula on page 884, the maximum suction flow rate \mathbf{Q}_{max} is

$Q_{max} = (2 \text{ to } 3) \times Q = (2 \text{ to } 3) \times 0.62$

= 1.24 to 1.86 L/min (ANR)

According to the maximum suction flow rate of the vacuum ejector, a nozzle with a 0.5 diameter can be used. If the vacuum ejector ZX series is used, representative model ZX105□ can be selected. (Based on the operating conditions, specify the complete part number for the vacuum ejector used.)

3. Adsorption Response Time Confirmation

Confirm the adsorption response time based on the characteristics of the vacuum ejector selected.

- (1) The maximum suction flow rate of the vacuum ejector ZX105□ is 5 L/min (ANR). From the formula on page 885, the average suction flow rate **Q**₁ is as follows:
 - Q1 = (1/2 to 1/3) x Ejector max. suction flow rate
 - = (1/2 to 1/3) x 5 = 2.5 to 1.7 L/min (ANR)
- (2) Next, find the maximum flow rate Q₂ of the piping. The conductance C is 0.22 from the Selection Graph (3). From the formula on page 885, the maximum flow rate is as follows:

Q2 = C x 55.5 = 0.22 x 55.5 = 12.2 L/min (ANR)

(3) Since Q_2 is smaller than Q_1 , $Q = Q_1$.

Thus, from the formula on page 885, the adsorption response time is as follows:

T = (V x 60)/Q = (0.0031 x 60)/1.7 = 0.109 seconds

= 109 msec

It is possible to confirm that the calculation result satisfies the required specification of 300 msec.