Continuous Rotation Specification

Electric Rotary Table

- **Rotation angle:** 360°

Application Examples

- Shock-less/High speed actuation
 - Max. speed: 420°/sec (7.33 rad/sec)
 - Max. acceleration/deceleration: 3,000°/sec² (52.36 rad/sec²)

- Positioning repeatability: ±0.05°

- Possible to set speed, acceleration/deceleration, and position. Max. 64 points

- Energy-saving product
 - Automatic 40% power reduction after the table has stopped.

Energy-saving product

- Series LECP6
 - 64 points positioning
 - Input using controller setting kit or teaching box

Specifications

<table>
<thead>
<tr>
<th>Size</th>
<th>Rotating torque [N-m]</th>
<th>Max. speed [°/s]</th>
<th>Positioning repeatability [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basic</td>
<td>High torque</td>
<td>Basic</td>
</tr>
<tr>
<td>10</td>
<td>0.22</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.8</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>6.6</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Step Motor (Servo/24 VDC) Controller

- Step data input type
- Series LECP6
- 64 points positioning
- Input using controller setting kit or teaching box
Electric Rotary Table
Series LER
Model Selection

Selection Procedure

Operating conditions

- Electric rotary table: LER30J
- Mounting position: Horizontal
- Load type: Inertial load Ta
- Configuration of load: 150 mm x 80 mm (Rectangular plate)
- Rotation angle θ: 180°

Angular acceleration/ angular deceleration: 1,000°/sec²
Angular speed: 420°/sec
Load mass m: 2.0 kg
Distance between shaft and center of gravity H: 40 mm

Step 1 Moment of inertia—Angular acceleration/deceleration

1. Calculate the moment of inertia

Formula
\[I = m \times (a^2 + b^2)/12 + m \times H^2 \]

Selection example
\[I = 2.0 \times (0.15^2 + 0.08^2)/12 + 2.0 \times 0.04^2 \]
\[= 0.00802 \text{ kg·m}^2 \]

Step 2 Necessary torque

1. Load type
 - Static load: Ts
 - Resistance load: Tf
 - Inertial load: Ta

2. Check the effective torque

Effective torque: \[T \geq Ts \]
Effective torque: \[T \geq Tf \times 1.5 \]
Effective torque: \[T \geq Ta \times 1.5 \]

Selection example
Inertial load: Ta
\[Ta \times 1.5 = \frac{2.0 \times 9.8 \times 1.5}{360 \times \pi} \]
\[= 0.00802 \times 1.000 \times 0.0175 \times 1.5 \]
\[= 0.21 \text{ N·m} \]

Step 3 Allowable load

1. Check the allowable load
 - Radial load
 - Thrust load
 - Moment

Selection example

- Thrust load
 \[2.0 \times 9.8 = 19.6 \text{ N} < \text{Allowable load OK} \]
- Allowable moment
 \[2.0 \times 9.8 \times 0.04 \]
 \[= 0.784 \text{ N·m} < \text{Allowable moment OK} \]

Step 4 Rotation time

1. Calculate the cycle time (rotation time)

Formula
\[T_1 = \frac{\omega_1}{\omega} \]
\[T_2 = \text{Constant speed time [s]} \]
\[T_3 = \frac{\omega_2}{\omega} \]
\[T_4 = \text{Settling time [s]} \]

Selection example
- Angular acceleration time T1 = 420/1,000 = 0.42 sec
- Angular deceleration time T3 = 420/1,000 = 0.42 sec
- Constant speed time T2 = (10 – 0.5 \times \omega \times \omega) (T1 + T3)/\omega
- Settling time T4 = 0.2 (sec)
- Cycle time T = T1 + T2 + T3 + T4

- Time until reaching the set speed
- Time while the actuator is operating at a constant speed
- Time from constant speed operation to stop
- Time until in position is completed
Formulas for Moment of Inertia (Calculation of moment of inertia I)

1. **Thin bar**
 - Position of rotation shaft: Perpendicular to a bar through one end
 \[
 I = m \cdot \frac{a^2}{3} + m \cdot \frac{a^2}{3}
 \]

2. **Thin bar**
 - Position of rotation shaft: Passes through the center of gravity of the bar.
 \[
 I = m \cdot \frac{a^2}{12}
 \]

3. **Thin rectangular plate (cuboid)**
 - Position of rotation shaft: Passes through the center of gravity of a plate.
 \[
 I = m \cdot \frac{a^2}{12}
 \]

4. **Thin rectangular plate (cuboid)**
 - Position of rotation shaft: Perpendicular to the plate and passes through one end.
 (The same applies to thicker cuboids.)
 \[
 I = m \cdot \frac{4a^2 + b^2}{12} + m \cdot \frac{4a^2 + b^2}{12}
 \]

5. **Thin rectangular plate (cuboid)**
 - Position of the rotation shaft: Passes through the center of gravity of the plate and perpendicular to the plate.
 (The same applies to thicker cuboids.)
 \[
 I = m \cdot \frac{a^2 + b^2}{12}
 \]

6. **Cylindrical shape (including a thin disk)**
 - Position of rotation shaft: Center axis
 \[
 I = m \cdot \frac{s^2}{2}
 \]

7. **Sphere**
 - Position of rotation shaft: Diameter
 \[
 I = m \cdot \frac{4}{5} r^2
 \]

8. **Thin disk (mounted vertically)**
 - Position of rotation shaft: Diameter
 \[
 I = m \cdot \frac{r^2}{4}
 \]

9. **When a load is mounted on the end of the lever**
 \[
 I = m \cdot \frac{a_1^2}{3} + m_2 \cdot a_2^2 + K
 \]
 (Ex.) Refer to 7 when the shape of m_2 is spherical.
 \[
 K = m_2 \cdot \frac{2r^2}{5}
 \]

10. **Gear transmission**
 - Number of teeth = a
 \[
 T = \frac{2 \pi}{360} \cdot a \cdot I_b
 \]

Load Type

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Static load: T_s</th>
<th>Resistance load: T_f</th>
<th>Inertial load: T_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static load</td>
<td>Gravity or friction force is applied to rotating direction.</td>
<td>Friction force is applied to rotating direction.</td>
<td>Rotate the load with inertia.</td>
</tr>
<tr>
<td>Resistance load</td>
<td><Gravity is applied.></td>
<td><Friction force is applied.></td>
<td><Center of rotation and center of gravity of the load are concentric.></td>
</tr>
<tr>
<td>Inertial load</td>
<td></td>
<td></td>
<td><Rotation shaft is vertical (up and down).></td>
</tr>
</tbody>
</table>

\[
T_s = F \cdot L
\]

T_s: Static load (N-m)
F: Clamping force (N)
L: Distance from the rotation center to the clamping position (m)

Gravity is applied to rotating direction.

\[
T_f = m \cdot g \cdot L
\]

T_f: Resistance load (N-m)
m: Load mass (kg)
g: Gravitational acceleration 9.8 (m/s^2)
L: Distance from the rotation center to the point of application of the gravity or friction force (m)

F: Friction force is applied to rotating direction.

\[
T_f = \mu \cdot m \cdot g \cdot L
\]

T_f: Resistance load (N-m)
μ: Friction coefficient

Necessary torque $T = T_s$

Necessary torque $T = T_f \cdot 1.5$

Necessary torque $T = T_a \cdot 1.5$

Note 1) To adjust the speed, margin is necessary for T_f and T_a.

• **Resistance load:** Gravity or friction force is applied to rotating direction.
 - Ex. 1) Rotation shaft is horizontal (lateral), and the rotation center and the center of gravity of the load are not concentric.
 - Ex. 2) Load moves by sliding on the floor.
 - The total of resistance load and inertial load is the necessary torque.
 - $T = (T_f + T_a) \times 1.5$

• **Not resistance load:** Neither gravity or friction force is applied to rotating direction.
 - Ex. 1) Rotation shaft is vertical (up and down).
 - Ex. 2) Rotation shaft is horizontal (lateral), and rotation center and the center of gravity of the load are concentric.
 - Necessary torque is inertial load only.
 - $T = T_a \times 1.5$

Note 1) To adjust the speed, margin is necessary for T_f and T_a.

Model Selection Series LER
Angular acceleration/angular deceleration: \(\omega \cdot \left(\text{°}/\text{s}^2 \right) \)

Moment of inertia: \(I \) (kg\cdotm\(^2\))

Effective torque: \(T \) (N\cdotm)

Series LER

LER10

![Graph for LER10 showing moment of inertia and angular acceleration/deceleration]

LER30

![Graph for LER30 showing moment of inertia and angular acceleration/deceleration]

LER50

![Graph for LER50 showing moment of inertia and angular acceleration/deceleration]
Allowable Load

<table>
<thead>
<tr>
<th>Size</th>
<th>Allowable radial load (N)</th>
<th>Allowable thrust load (N)</th>
<th>Allowable moment (N·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basic type</td>
<td>High precision type</td>
<td>Basic type</td>
</tr>
<tr>
<td>10</td>
<td>78</td>
<td>86</td>
<td>74</td>
</tr>
<tr>
<td>30</td>
<td>196</td>
<td>233</td>
<td>197</td>
</tr>
<tr>
<td>50</td>
<td>314</td>
<td>378</td>
<td>296</td>
</tr>
</tbody>
</table>

Table Displacement (Reference Value)

- Displacement at point A when a load is applied to point A 100 mm away from the rotation center.

Deflection Accuracy: Displacement at 180° Rotation (Guide)

<table>
<thead>
<tr>
<th>Measured part</th>
<th>LER (Basic type)</th>
<th>LERH (High precision type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deflection on the top of the table</td>
<td>0.1</td>
<td>0.03</td>
</tr>
<tr>
<td>Deflection on the external surface of the table</td>
<td>0.1</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Electric Rotary Table

Series LER

LER10, 30, 50

Step Motor (Servo/24 VDC)

Continuous Rotation Specification

How to Order

LER 10K-1 - S 16N 1

1. **Table accuracy**
 - Nil (Basic type)
 - H (High precision type)

2. **Size**
 - 10
 - 30
 - 50

3. **Rotation angle [°]**
 - 1: 360

4. **Actuator cable type**
 - Nil: Without cable
 - S: Standard cable
 - R: Robotic cable (Flexible cable)

5. **Actuator cable length [m]**
 - Nil: Without cable
 - 8
 - 10
 - 15
 - 20

6. **Controller type**
 - Nil: Without controller
 - 6N: LECP6 (Step data input type)
 - 6P: NPN
 - PNP

7. **Controller mounting**
 - Nil: Without controller
 - D: DIN rail mounting

8. **Motor cable entry**
 - Nil: Basic type (entry on the right side)
 - L: Entry on the left side

9. **Controller mounting**
 - Nil: Without controller
 - D: DIN rail mounting

Caution

[CE-compliant products]

EMC compliance was tested by combining the electric actuator LER series and the controller LEC series.

The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.

[UL-compliant products]

When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

The actuator and controller are sold as a package.

Confirm that the combination of the controller and the actuator is correct.

<Check the following before use.>

1. Check the actuator label for model number. This matches the controller.
2. Check Parallel I/O configuration matches (NPN or PNP).

Compatible Controller

<table>
<thead>
<tr>
<th>Type</th>
<th>Step data input type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td>LECP6</td>
</tr>
<tr>
<td>Features</td>
<td>Value (Step data) input Standard controller</td>
</tr>
<tr>
<td>Compatible motor</td>
<td>Step motor (Servo/24 VDC)</td>
</tr>
<tr>
<td>Maximum number of step data</td>
<td>64 points</td>
</tr>
<tr>
<td>Power supply voltage</td>
<td>24 VDC</td>
</tr>
</tbody>
</table>

* Refer to the operation manual for using the products.
Please download it via our website, http://www.smcworld.com
Specifications

Step Motor (Servo/24 VDC)

<table>
<thead>
<tr>
<th>Model</th>
<th>LER_10K</th>
<th>LER_110J</th>
<th>LER_130K</th>
<th>LER_330J</th>
<th>LER_50K</th>
<th>LER_55J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation angle [°]</td>
<td>360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle setting range [°] Note 6)</td>
<td>±20000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. rotating torque [N·m]</td>
<td>0.32</td>
<td>0.22</td>
<td>1.2</td>
<td>0.8</td>
<td>10</td>
<td>6.6</td>
</tr>
<tr>
<td>Max. pushing torque [N·m] Note 1) Note 3)</td>
<td>0.16</td>
<td>0.11</td>
<td>0.6</td>
<td>0.4</td>
<td>5</td>
<td>3.3</td>
</tr>
<tr>
<td>Max. moment of inertia [kg·m²] Note 2) Note 3)</td>
<td>0.0040</td>
<td>0.0018</td>
<td>0.027</td>
<td>0.012</td>
<td>0.10</td>
<td>0.04</td>
</tr>
<tr>
<td>Angular speed [°/sec] Note 8)</td>
<td>20 to 280</td>
<td>30 to 420</td>
<td>20 to 280</td>
<td>30 to 420</td>
<td>20 to 280</td>
<td>30 to 420</td>
</tr>
<tr>
<td>Pushing speed [°/sec]</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Max. angular acceleration/deceleration [°/sec²] Note 2) Note 3)</td>
<td>3,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backlash [°]</td>
<td>±0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positioning repeatability [°]</td>
<td>±0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact/Vibration resistance [m²] Note 4)</td>
<td>150/30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actuation type</td>
<td>Special worm gear + Belt drive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. operating frequency [c.p.m]</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature range [°C]</td>
<td>5 to 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating humidity range [%RH]</td>
<td>90 or less (No condensation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>Basic type</td>
<td>0.51</td>
<td>1.2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High precision type</td>
<td>0.55</td>
<td>1.3</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor size</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor type</td>
<td>Stepper motor (Servo/24 VDC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encoder</td>
<td>Incremental A/B phase (800 pulse/rotation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximity sensor (for return to origin)/Input circuit</td>
<td>2-wire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximity sensor (for return to origin)/Input point</td>
<td>1 input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply [V]</td>
<td>24 VDC ±10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power consumption [W] Note 5)</td>
<td>11</td>
<td>22</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby power consumption when operating [W] Note 6)</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. instantaneous power consumption Note 7)</td>
<td>14</td>
<td>42</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1) Pushing force accuracy is LER10: ±30% (F.S.), LER30: ±25% (F.S.), LER50: ±20% (F.S.).
Note 2) The angular acceleration, angular deceleration and angular speed may fluctuate due to variations in the inertia moment. Refer to page 3 “Moment of Inertia—Angular Acceleration/Deceleration, Effective Torque—Angular Speed” graphs for confirmation.
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m, then it will decrease by up to 10% for each 5 m. (At 15 m: Reduced by up to 20%)
Note 4) Impact resistance: No malfunction occurred when the slide table was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 5) The power consumption (including the controller) is for when the actuator is operating.
Note 6) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during operation.
Note 7) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 8) The angle displayed on the monitor is automatically reset to 0° every 360°. To set an angle (position), use the INC (relative) operation method.
If an angle of 360° or more is set using the ABS (absolute) operation method, the correct operation cannot be performed.

Table Rotation Angle Range

Table Rotation Angle Range

Note 1) Range within which the table can move.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) The sensor detection range is recognized as origin. When detecting the sensor, the table rotates in the reverse direction within the sensor detection range.
Construction

Component Parts

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Material</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Body</td>
<td>Aluminum alloy</td>
<td>Anodized</td>
</tr>
<tr>
<td>2</td>
<td>Side plate A</td>
<td>Aluminum alloy</td>
<td>Anodized</td>
</tr>
<tr>
<td>3</td>
<td>Side plate B</td>
<td>Aluminum alloy</td>
<td>Anodized</td>
</tr>
<tr>
<td>4</td>
<td>Worm screw</td>
<td>Stainless steel</td>
<td>Heat treated +</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Specially treated</td>
</tr>
<tr>
<td>5</td>
<td>Worm wheel</td>
<td>Stainless steel</td>
<td>Heat treated +</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Specially treated</td>
</tr>
<tr>
<td>6</td>
<td>Bearing cover</td>
<td>Aluminum alloy</td>
<td>Anodized</td>
</tr>
<tr>
<td>7</td>
<td>Table</td>
<td>Aluminum alloy</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Joint</td>
<td>Stainless steel</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Bearing holder</td>
<td>Aluminum alloy</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Bearing retainer</td>
<td>Aluminum alloy</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Pulley A</td>
<td>Aluminum alloy</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Pulley B</td>
<td>Aluminum alloy</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Grommet</td>
<td>NBR</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Motor plate</td>
<td>Carbon steel</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Basic type</td>
<td>Deep groove ball</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bearing</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Deep groove ball</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Deep groove ball</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Deep groove ball</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Belt</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Step motor (Servo/24 VDC)</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Component Parts (360° type)

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Material</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Proximity dog</td>
<td>Carbon steel</td>
<td>Chromate treated</td>
</tr>
<tr>
<td>22</td>
<td>Sensor holder</td>
<td>Carbon steel</td>
<td>Chromate treated</td>
</tr>
<tr>
<td>23</td>
<td>Sensor holder</td>
<td>Aluminum alloy</td>
<td>Anodized (High precision type can be used only)</td>
</tr>
<tr>
<td>24</td>
<td>Square nut</td>
<td>Aluminum alloy</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Proximity sensor assembly</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
Dimensions

LER□10□

<table>
<thead>
<tr>
<th>Model</th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>LER10</td>
<td>10</td>
<td>3.5</td>
<td>4.8</td>
</tr>
<tr>
<td>LERH10</td>
<td>17</td>
<td>10.5</td>
<td>11.8</td>
</tr>
</tbody>
</table>

- **Manual override screw** (Both sides)
- **Origin mark**
- **Effective length of accuracy** = 7
- **Effective length of accuracy** = 2
- **H3**
- **H1**
- **H2**
- **Origin mark**

Dimensions (mm)

- LER10: 10 x 3.5 x 4.8
- LERH10: 17 x 10.5 x 11.8

Electric Rotary Table

Series LER

Continuous Rotation Specification
Series LER

Continuous Rotation Specification

Dimensions

LER□30

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>H1</td>
</tr>
<tr>
<td>LER30</td>
<td>13</td>
</tr>
<tr>
<td>LERH30</td>
<td>22</td>
</tr>
</tbody>
</table>

Manual override screw (Both sides)

Origin mark

Effective length of accuracy = 2

Effective length of accuracy = 11

H3

H2

H1

≈ 250 (Motor cable entry: Entry on the left side)

≈ 250 (Motor cable entry: Basic type)

≈ 250 (Sensor cable entry: Entry on the left side)

≈ 250 (Sensor cable entry: Basic type)

2 x M8 x 1.25 x 16

6 x M5 x 0.8 x 8

2 x ø11 depth of counterbore 6.5

ø64h8 (0.016)

ø63h8 (0.014)

ø32H8 (0.039)

ø17 (through)

2 x ø8.5 (through)

2 x ø6.8 (through)

2 x ø14 depth of counterbore 8.5

5H8

30°

94

23

49

23

49

75

ø32 x ø5

+0.033

0

ø20 (through)

107

2.4

2.4

2 x ø14 depth of counterbore 8.5

90

0

–0.046

ø35H8 ()

ø76h8 ()

ø74h8 ()

+0.039

0

2 x ø8.5 (through)

+0.018

0

5H8

2 x M10 x 1.5 x 20

7526 x M6 x 1.0 x 10

5H8

2 x ø6.8 ()

−0.046

4H8 () depth 5

+0.018

0

4H8 () depth 5

≈ 230 (Motor cable entry: Entry on the left side)

≈ 240 (Motor cable entry: Basic type)
Series LER

Electric Rotary Table/ Specific Product Precautions 1

Be sure to read before handling. Refer to “Handling Precautions for SMC Products” (M-E03-3) for Safety Instructions and the Operation Manual for Electric Actuator Precautions. Please download it via our website, http://www.smcworld.com

Design/Selection

Warning

1. If the operating conditions involve load fluctuations, ascending/descending movements, or changes in the frictional resistance, ensure that safety measures are in place to prevent injury to the operator or damage to the equipment.

Failure to provide such measures could accelerate the operation speed, which may be hazardous to humans, machinery, and other equipment.

2. Power failure may result in a decrease in the pushing force; ensure that safety measures are in place to prevent injury to the operator or damage to the equipment.

When the product is used for clamping, the clamping force could be decreased due to power failure, potentially creating a hazardous situation in which the workpiece is released.

Mounting

Warning

1. Do not drop or hit the electric rotary table to avoid scratching and denting the mounting surfaces.

Even slight deformation can cause the deterioration of accuracy and operation failure.

2. When mounting the load, tighten the mounting screws within the specified torque range.

 - Tightening the screws with a higher torque than recommended may cause malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position.

Mounting

Warning

1. If the operating speed is set too fast and the moment of inertia is too large, the product could be damaged.

 Set appropriate product operating conditions in accordance with the model selection procedure.

2. If more precise repeatability of the rotation angle is required, use the product with an external stopper, with repeatability of $\pm 0.01^\circ$ (180° and 90° with adjustment of $\pm 2^\circ$) or by directly stopping the workpiece using an external object utilizing the pushing operation.

3. When using the electric rotary table with an external stopper, or by directly stopping the load externally, ensure that the [Pushing operation] is utilized.

 Also, ensure that the workpiece is not impacted externally during the positioning operation or in the range of positioning operation.

Mounting

Warning

1. Be sure to read before handling. Refer to “Handling Precautions for SMC Products” (M-E03-3) for Safety Instructions and the Operation Manual for Electric Actuator Precautions. Please download it via our website, http://www.smcworld.com

Through-hole mounting

Model

<table>
<thead>
<tr>
<th>Bolt</th>
<th>Max. tightening torque [N·m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LER-10 M5 x 0.8</td>
<td>3.0</td>
</tr>
<tr>
<td>LER-30 M6 x 1</td>
<td>5.0</td>
</tr>
<tr>
<td>LER-50 M8 x 1.25</td>
<td>12.0</td>
</tr>
</tbody>
</table>

Body tapped mounting

Model

<table>
<thead>
<tr>
<th>Bolt</th>
<th>Max. tightening torque [N·m]</th>
<th>Max. screw-in depth [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LER-10 M6 x 1</td>
<td>5.0</td>
<td>12</td>
</tr>
<tr>
<td>LER-30 M8 x 1.25</td>
<td>12.0</td>
<td>16</td>
</tr>
<tr>
<td>LER-50 M10 x 1.5</td>
<td>25.0</td>
<td>20</td>
</tr>
</tbody>
</table>

Body mounting

Model

<table>
<thead>
<tr>
<th>Thread length [mm]</th>
<th>Max. tightening torque [N·m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LER-10 M4 x 0.7</td>
<td>6</td>
</tr>
<tr>
<td>LER-30 M5 x 0.8</td>
<td>8</td>
</tr>
<tr>
<td>LER-50 M6 x 1</td>
<td>10</td>
</tr>
</tbody>
</table>

Mounting

Model

<table>
<thead>
<tr>
<th>L [mm] (Initial setting)</th>
<th>Cable entry: Basic type/Entry on the left side (Between the sensor holder end face and proximity sensor end face)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LER-10-1</td>
<td>31/31</td>
</tr>
<tr>
<td>LER-30-1</td>
<td>42/42</td>
</tr>
<tr>
<td>LER-50-1</td>
<td>51.5/51.5</td>
</tr>
</tbody>
</table>
Handling

⚠️ **Caution**

1. When an external guide is used, connect it in such a way that no impact or load is applied to it.
 Use a free moving connector (such as a coupling).

2. **INP output signal**
 1) Positioning operation
 When the product comes within the set range by step data
 (In position), the INP output signal will turn on.
 Initial value: Set to [0.50] or higher.
 2) Pushing operation
 When the effective force exceeds the [Trigger LV] value (including thrust during operation), the INP output signal will turn on.
 The [Trigger LV] should be set between 40% and [Pushing force].
 a) To ensure that the clamping and external stop is achieved by [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
 b) When the [Pushing force] and [Trigger LV] are set less than the specified range, the INP output signal will turn on from the pushing start position.

3. When the workpiece is to be stopped by the electric rotary actuator with an external stopper or directly by an external object, utilize the “pushing operation”.
 Do not stop the table with an external stopper or external object by using in the range of the “positioning operation mode”.
 If the product is used in the positioning operation mode, there may be galling or other problems when the product/workpiece comes into contact with the external stopper or external object.

4. When the table is stopped by the pushing operation mode (stopping/clamping), set the product to a position of at least 1° away from the workpiece. (This position is referred to as the pushing start position.)
 If the pushing start position (stopping or clamping) is set to the same position as the external stop position, the following alarms may be generated and operation may become unstable.
 a. “Posn failed” alarm is generated.
 It is not possible to reach the pushing start position within the target time.
 b. “Pushing ALM” alarm is generated.
 The product is pushed back from a pushing start position after starting to push.
 c. “Deviation over flow” alarm is generated.
 Displacement exceeding the specified value is generated at the pushing start position.

5. There is no backlash effect when the product is stopped externally by pushing operation.
 For the return to origin, the origin position is set by the pushing operation.

6. For the specification with an external stopper, an angle adjustment bolt is provided as standard.
 The rotation angle adjustment range is ±2° from the angle rotation end.
 If the angle adjustment range is exceeded, the rotation angle may change due to insufficient strength of the external stopper.
 One revolution of the adjustment bolt is approximately equal to 1° of rotation.

Maintenance

⚠️ **Caution**

7. When mounting the product, keep a 40 mm or longer diameter for bends in the motor cable.

⚠️ **Danger**

1. The high precision type bearing is assembled by pressing into position. It is not possible to disassemble it.