Slide Table/High Precision Type

In-line LESYHDD Series

Right/Left side parallel LESYH \square_{L}^{R} Series

Selection Procedure

Positioning Control Selection Procedure

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Check the work load-speed. <Speed-Work load graph> (page 936-4) Select a model based on the workpiece mass and speed while referencing the speed-work load graph.
Selection example) The LESYH16 \square B-50 can be temporarily selected as a possible candidate based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2

Check the cycle time.
Calculate the cycle time using the following calculation method.
Cycle time:
T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

- T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4: Settling time varies depending on the conditions such as motor types, load, and in position of the step data. Therefore, calculate the settling time while referencing the following value.
$\mathrm{T} 4=0.15[\mathrm{~s}]$
Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=200 / 3000=0.07[\mathrm{~s}]$,
$\mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=200 / 3000=0.07[\mathrm{~s}]$
$T 2=\frac{L-0.5 \cdot V \cdot(T 1+T 3)}{V}$
$=\frac{50-0.5 \cdot 200 \cdot(0.07+0.07)}{200}$
$\begin{aligned} &=0.18[\mathrm{~s}] \\ & 4=0.15[\mathrm{~s}]\end{aligned}$
The cycle time can be found as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.07+0.18+0.07+0.15 \\
& =0.47[\mathbf{s}]
\end{aligned}
$$

Operating conditions

- Workpiece mass: 1 [kg] - Workpiece mounting
- Speed: 200 [mm/s] condition:
- Mounting orientation: Vertical
- Stroke: 50 [mm]
- Acceleration/Deceleration: 3000 [$\mathrm{mm} / \mathrm{s}^{2}$]
- Cycle time: 0.5 s

LESYH16 $\square \square /$ AC Servo Motor Vertical

<Speed-Work load graph>

]

L : Stroke $[\mathrm{mm}]$. \qquad (Operating condition) V : Speed [mm/s] (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed
T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
T4: Settling time [s] ... Time until positioning is completed

Step 3 Check the allowable moment. <Static allowable moment> (page 936-4) <Dynamic allowable moment> (pages 936-5, 936-6)
Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

LESYH16/Pitching

Based on the above calculation result, the LESYH16 $\square \mathrm{N} \square \mathrm{B}-50$ should be selected.

<Dynamic allowable moment>

Selection Procedure

Force Control Selection Procedure

Selection Example

The model selection method shown below corresponds to SMC's standard motor.
For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Operating conditions

Step 1 Check the required force.
Calculate the approximate required force for a pushing operation.
Selection example) • Pushing force: $210[\mathrm{~N}]$

- Workpiece mass: 1 [kg]

The approximate required force can be found to be $210+10=220[\mathrm{~N}]$.
Table Weight

Model	Stroke $[\mathrm{mm}]$		
	50	100	150
LESYH16	0.4	0.7	-
LESYH25	0.9	1.3	1.7

* If the mounting position is vertical upward, add the table weight.

Select a model based on the approximate required force while referencing the specifications (page 936-9).
Selection example based on the specifications)

- Approximate required force: 220 [N]
- Speed: 100 [mm/s]

The LESYH16 $\square \mathrm{B}$ can be temporarily selected as a possible candidate. Then, calculate the required force for a pushing operation. If the mounting position is vertical upward, add the actuator table weight.
Selection example based on the table weight)

- LESYH16 \square B table weight: 0.7 [kg] The required force can be found to be $220+7=227[\mathrm{~N}]$.

Step 2 Check the pushing force. <Force conversion graph>
Select a model based on the ratio to rated torque and force while referencing the force conversion graph.
Selection example)
Based on the graph shown on the right side,

- Ratio to rated torque: 80 [\%]
- Force: 227 [N]

The LESYH16B can be temporarily selected as a possible candidate.

Step 3 Check the allowable moment.
<Static allowable moment> (page 936-4)
<Dynamic allowable moment> (pages 936-5, 936-6)
Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Based on the above calculation result, the LESYH16B-100 should be selected.

<Force conversion graph>

<Dynamic allowable moment>
LESYH16/Pitching

LESYH Series
 Motorless Type

Speed-Work Load Graph (Guide)

LESYH16

LESYH25

Force Conversion Graph (Guide)

LESYH16 \square (Motor mounting position: Parallel/In-line)

LESYH25 \square (Motor mounting position: Parallel)

LESYH25D \square (Motor mounting position: In-line)

* When using the force control or speed control, set the max. value to be no more than 90% of the rated torque.

Static Allowable Moment

Model	LESYH16		LESYH25		
Stroke [mm]	50	100	50	100	150
Pitching [$\mathrm{N} \cdot \mathrm{m}$]	26	43	77	112	155
Yawing [$\mathrm{N} \cdot \mathrm{m}$]					
Rolling [$\mathrm{N} \cdot \mathrm{m}$]	48		146	177	152

Dynamic Allowable Moment

Model

m : Work load [kg
Me: Allowable moment [$\mathrm{N} \cdot \mathrm{m}$]
L: Overhang to the work load center of gravity [mm]
L. Overhang to the work load center of gravily [mm]

LESYH16

Horizontal/Bottom

$$
\mathbf{Z}
$$

LESYH Series

Motorless Type

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LESYH
Size: 16
Mountin

Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.
$\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z$
5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LESYH
Size: 16
Mounting orientation: Horizontal
Acceleration [mm/s²]: 5000
Work load [kg]: 4.0
Work load center position [mm]: $\mathbf{X c}=\mathbf{8 0}, \mathbf{Y c}=\mathbf{5 0}, \mathbf{Z c}=\mathbf{6 0}$
2. Select three graphs from the top of the first row on page 936-4.

Mounting orientation

Model	LESYH16	LESYH25
B side parallelism to A side $[\mathrm{mm}]$	Refer to Table 1.	
B side traveling parallelism to A side $[\mathrm{mm}]$	Refer to Graph 1.	
C side perpendicularity to A side $[\mathrm{mm}]$	0.05	
M dimension tolerance $[\mathrm{mm}]$	± 0.3	
W dimension tolerance $[\mathrm{mm}]$	± 0.2	
Radial clearance $[\mu \mathrm{m}]$	-10 to 0	-14 to 0

Graph 1 B side traveling parallelism to A side

Table Deflection (Reference Value)

Table displacement due to pitch moment load
Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESYH16

LESYH25

Table displacement due to yaw moment load
Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESYH16

LESYH25

Table displacement due to roll moment load
Table displacement of section A when loads are applied to the section F with the slide table retracted.

LESYH16
$\mathbf{L r}=120 \mathrm{~mm}$

LESYH25
$\mathbf{L r}=200 \mathrm{~mm}$

Slide Table/
 High Precision Type

Size	2 Motor mounting position		3 Mounting type	
16	D	In-line	NZ	NU
25	R	Right side parallel	NY	NT
	L	Left side parallel	NX	NM1
			NW	NM2
			NV	NM3

4 Lead [mm]

	Size	
	$\mathbf{1 6}$	$\mathbf{2 5}{ }^{* 1}$
A	12	$16(20)$
B	6	$8(10)$

*1 The values shown in () are the leads for the right/left side parallel types. Except mounting type NM1 (Equivalent leads which include the pulley ratio [1.25:1])

5 Stroke [mm]		
Size		
100		
150		

Compatible Motors and Mounting Types

Applicable motor model		Size/Mounting type														
Manufacturer	Series	16						25								
		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	$\Sigma-\mathrm{V} / 7$	-*3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bigcirc	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6		\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
FANUC CORPORATION	β is (-B)	-	-	-	-	-	-	$\underset{(B 1 \text { only })}{\bullet}$	-	-	\bigcirc	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	-*3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	- *1	-	- *2	-	-	-	-	-	-	-	\bigcirc	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	- *1	-	- *2	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-		-	-	-	-	-	-	-	-	-	\bigcirc
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL		-	-	-	-	-	-	-	$\begin{array}{\|c\|} \hline \mathbf{P}^{* 1} \\ \text { (MP/VP } \\ \text { only) } \\ \hline \end{array}$	-	-	-		-	-
Beckhoff Automation GmbH	AM 30/31/80/81	-	-	-	-	-	-	-	-	$\underset{(80 / 81}{* * 1}$ only)	-	$\underset{(30 \text { only })}{* 1}$		-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bigcirc	-	-	-	-	-	-*1	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-

*1 Motor mounting position: In-line only *2 Motor mounting position: Parallel only
*3 For some motors, the connector may protrude from the motor body. Be sure to check for interreference with the mounting surface before selecting a motor.

Slide Table／High Precision Type LESYH Series

Motorless Type

Specifications

Model			LESYH16		LESYH25（Parallel）		LESYH25（In－line）	
	Stroke［mm］		50，100		50，100， 150			
	Work load［kg］	Horizontal＊1	8		12		12	
		Vertical	6	12	10	20	10	20
	Force［ N$]^{* 2}$ （Set value：Rated torque 45 to 90% ）		65 to 131	127 to 255	79 to 157	154 to 308	98 to 197	192 to 385
	Max．speed［mm／s］		400	200	400	200	400	200
	Pushing speed［mm／s］＊3		35 or less		30 or less			
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］		5000					
	Positioning repeatability［mm］		± 0.01					
	Lost motion［mm］＊4		0.1 or less					
	Ball screw specifications	Thread size［mm］	$ø 10$		$\varnothing 12$			
		Lead［mm］ （including pulley ratio）	12	6	$\begin{gathered} 16 \\ (20) \end{gathered}$	$\begin{gathered} \hline 8 \\ (10) \end{gathered}$	16	8
		Shaft length［mm］	Stroke＋ 93.5		Stroke＋ 104.5			
	Impact／Vibration resistance［m／s ${ }^{2}{ }^{* 5}$		50／20					
	Actuation type		Ball screw＋Belt（Parallel） Ball screw（In－line）		Ball screw＋Belt ［Pulley ratio 1．25：1］		Ball screw	
	Guide type		Linear guide（Circulating type）					
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）					
	Actuation unit weight［kg］	50 st	0.585		1.21			
		100 st	0.919		1.68			
\％		150 st	－		2.19			
免	Other inertia ［kg．cm ${ }^{2}$ ］		$\begin{gathered} 0.012 \\ 0.015 \end{gathered}$	$\begin{aligned} & \mathrm{YH} 16) \\ & \mathrm{H} 16 \mathrm{D}) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.035 \text { (LESYH25) } \\ 0.061 \text { (LESYH25D) } \end{gathered}$			
¢	Friction coefficient		0.05					
O	Mechanical efficiency		0.8					
\％	Motor shape		$\square 40$		$\square 60$			
蒝	Motor type		AC servo motor					
星	Rated output capacity［W］		100		200			
䐴	Rated torque［ $\mathrm{N} \cdot \mathrm{m}$ ］		0.32		0.64			
	Rated rotation［rpm］				3000			

＊1 This is the max．value of the horizontal work load．An external guide is necessary to support the load（Friction coefficient of guide： 0.1 or less）．The actual work load changes according to the condition of the external guide．Confirm the load using the actual device．
＊2 The force setting range for the force control（Speed control mode， Torque control mode）
The force changes according to the set value．Set it with reference to the＂Force Conversion Graph（Guide）＂on page 936－4．
＊3 The allowable collision speed for collision with the workpiece
＊4 A reference value for correcting errors in reciprocal operation
＊5 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊6 Each value is only to be used as a guide to select a motor of the appropriate capacity．

Weight

［kg］			
Model	Stroke		
	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$
LESYH16	1.48	1.87	-
LESYH25	2.77	3.37	4.77

LESYH Series

Motorless Type

Dimensions

Table operating range*1

Dimensions				
Model	Stroke	C	D	E
LESYH16 $\square \square-50$	50	40	6	116.5
LESYH16 $\square \square-100$	100	44	8	191.5

Motor Mounting Position: In-line/Motor Mounting, Applicable Motor Dimensions [mm]

Size	Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ \text { (Max.) } \end{gathered}$	FF	FG	FJ	FK
		Mounting type	Applicale moior								
LESYH16	NZ	M 4×0.7	$\varnothing 4.5$	7.5	$\varnothing 46$	30	3.7	47	-	8	25 ± 1
	NY	M3 0.5	ø3.4	6	$\varnothing 45$	30	4.2	47	-	8	25 ± 1
	NX	M 4×0.7	$\varnothing 4.5$	7.5	ø46	30	3.7	47	-	8	18 ± 1
	NM1	$\varnothing 3.4$	M3	17	$\square 31$	22	2.5	36	19	5*2	18 to 25
	NM2	$\varnothing 3.4$	M3	28	$\square 31$	22*1	2.5*1	47	30	6*2	20 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 936-13.) *2 Shaft type: D-cut shaft

*1 Do not allow collisions at either end of the table operating range at a speed exceeding "pushing speed." Additionally when running the positioning operation, do not set within 2 mm of both ends.
*2 If the workpiece retaining screws are too long, they may come in contact with the guide block, resulting in a malfunction. Use screws of a length equal to or shorter than the thread length.
*3 For checking the limit and the intermediate signal. Applicable to the D-M9 $\square, D-M 9 \square E$, and D-M9 \square W (2-color indicator) The auto switches should be ordered separately.

Motor mounting position: Left side parallel | LESYH16LN $\square-\square$
Auto switch

Motor flange dimensions (Motor mounting position: Parallel)
NZ, NY, NX NM1, NM2, NM3

Motor Mounting Position: Parallel/Motor Mounting, Applicable Motor Dimensions [mm]

Size	Mounting type	FA		FB	FC	FD	$\begin{array}{\|c\|} \hline \text { FE } \\ \text { (Max.) } \\ \hline \end{array}$	FF	FG	FJ	FK
		Mounting type	Appicade moior								
LESYH16	NZ	M4 x 0.7	$\varnothing 4.5$	7.5	ø46	30	3.7	11	42	8	25 ± 1
	NY	M3 $\times 0.5$	$\varnothing 3.4$	5.5	ø45	30	5	11	38	8	25 ± 1
	NX	M4 x 0.7	$\varnothing 4.5$	7	ø46	30	3.7	8	42	8	18 ± 1
	NM1	$\varnothing 3.4$	M3	7	$\square 31$	28	3.5	8.5	42	5*1	18 to 25
	NM2	$\varnothing 3.4$	M3	7	$\square 31$	28	3.5	8.5	42	6	20 ± 1
	NM3	$\varnothing 3.4$	M3	7	$\square 31$	28	3.5	5.5	42	5*1	20 ± 1

[^0]Dimensions

*1 Do not allow collisions at either end of the table operating range at a speed exceeding "pushing speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends.
*2 If the workpiece retaining screws are too long, they may come in contact with the guide block, resulting in a malfunction. Use screws of a length equal to or shorter than the thread length.
*3 For checking the limit and the intermediate signal. Applicable to the D-M9 \square, D-M9 \square E, and D-M9 \square W (2-color indicator) The auto switches should be ordered separately. Refer to the Web Catalog for details.

Motor Mounting Position: Paralle//Motor Mounting, Applicable Motor Dimensions [mm]

Size	$\begin{array}{\|c} \hline \text { Mounting } \\ \text { type } \end{array}$	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ \text { (Max.) } \end{gathered}$	FF	FJ	FK
		Mounting type	Appicale moior							
LESYH25	NZ	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	13	14	30 ± 1
	NY	M4 x 0.7	$\varnothing 4.5$	7	¢70	50	4.6	13	11	30 ± 1
	NW	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	13	9	25 ± 1
	NU	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	13	11	23 ± 1
	NT	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	17	12	30 ± 1
	NM1	M4 x 0.7	$\varnothing 4.5$	(5)	$\square 47.1$	38.1	-	5	6.35*1	20 ± 1
	NM2	M4 x 0.7	$\varnothing 4.5$	8	$\square 50$	38.1	-	11.5	10	24 ± 1

[^1]- The motor and motor mounting screws should be provided by the customer.
- Motor shaft type should be cylindrical for the NZ, NY, NW, NM2 mounting types, and D-cut type for the NM1 and NM3 mounting type.

Motor Mounting: Parallel

- When mounting a pulley, remove all oil content, dust, and dirt adhered to the shaft and the inside of the pulley.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

LESYH16: NM1, NM2, NM3

[Included parts] (for NM1)
Hexagon socket head set screw/MM1
(Tightening torque: TT1 [$\mathrm{N} \cdot \mathrm{m}$])

* Mount to D-cut surface of the motor shaft. $\xrightarrow{\text { Provided by the customer] }} \xrightarrow{\mathrm{PP}(\text { Mounting distance })}$ Motor [Included parts] (for NM1) Motor pulley

Refer to the figure on the
right for the motor pulley of NM2.

Motor flange details

LESYH16: NZ, NY, NX
LESYH25: NZ, NY, NW, NU, NT

[Included parts] (for NM2) Hexagon socket head cap screw/MM1 (Tightening torque: TT1 [$\mathrm{N} \cdot \mathrm{m} \mathrm{m}$)

LESYH25: NM1
[Included parts]
Hexagon socket head set screw/MM1

[Included parts]
Motor flange

* Refer to the "Motor flange details."
(for NM2) Motor pulley

LESYH16: NM1, NM2, NM3

LESYH25: NM1, NM2

Dimensions

Size	Mounting type	MM1	TT1	MM2	TT2	MM3	TT3	PD	PP	BT	FA	FB	FC	FD	FE	FF	FG
16	NZ	M2.5 $\times 10$	1.0	M3 $\times 8$	0.63	$\mathrm{M} 4 \times 10$	1.5	8	7.5	19	M 4×0.7	7.5	ه46	30	3.7	11	42
	NY	M 2.5×10	1.0	M3 $\times 8$	0.63	$\mathrm{M} 4 \times 10$	1.5	8	7.5	19	M3 $\times 0.5$	5.5	$\varnothing 45$	30	5	11	38
	NX	M2.5 $\times 10$	1.0	M3 $\times 8$	0.63	$\mathrm{M} 4 \times 10$	1.5	8	4.5	19	M4 $\times 0.7$	7	$\varnothing 46$	30	3.7	8	42
	NM1	M3 $\times 5$	0.63	M3 $\times 8$	0.63	M4 $\times 10$	1.5	5	11.8	19	$\varnothing 3.4$	7	$\square 31$	28	3.5	8.5	42
	NM2	M 2.5×10	1.0	M3 $\times 8$	0.63	$\mathrm{M} 4 \times 10$	1.5	6	4.8	19	$\varnothing 3.4$	7	$\square 31$	28	3.5	8.5	42
	NM3	M3 $\times 5$	0.63	M3 $\times 8$	0.63	M4 $\times 10$	1.5	5	8.8	19	$\varnothing 3.4$	7	$\square 31$	28	3.5	5.5	42
25	NZ	M3 $\times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	M6 x 14	5.2	14	4.5	30	M5 x 0.8	8.5	$\varnothing 70$	50	4.6	13	60
	NY	M3 $\times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	M6x 14	5.2	11	4.5	30	M 4×0.7	7	$\varnothing 70$	50	4.6	13	60
	NW	M4 x 12	3.6	M4 $\times 12$	1.5	M6 $\times 14$	5.2	9	4.5	30	M5 x 0.8	8.5	ø70	50	4.6	13	60
	NU	M3 $\times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	M6x 14	5.2	11	4.5	30	M5 x 0.8	8.5	ø70	50	4.6	13	60
	NT	M3 $\times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	M6x 14	5.2	12	8.5	30	M5 x 0.8	8.5	ø70	50	4.6	17	60
	NM1	M3 $\times 5$	0.63	$\mathrm{M} 4 \times 12$	1.5	M6 $\times 14$	5.2	6.35	8	30	M4 $\times 0.7$	(5)	$\square 47.1$	38.2	-	5	56.4
	NM2	M3 x 12	1.5	M4 $\times 12$	1.5	M6 $\times 14$	5.2	10	3	30	M4 $\times 0.7$	8	$\square 50$	38.2	-	11.5	60

Motor Mounting Diagram

Mounting procedure

1) Secure the motor pulley to the motor (provided by the customer) with the MM1 hexagon socket head cap screw or hexagon socket head set screw.
2) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
3) Put the timing belt on the motor pulley and body side pulley, and then secure it temporarily with the MM2 hexagon socket head cap screws. (Refer to the mounting diagram.)
4) Apply the belt tension and tighten the timing belt with the MM2 hexagon socket head cap screws. (The reference level is the elimination of the belt deflection.)
5) Secure the return plate with the MM3 hexagon socket head cap screws.

Included Parts List

Size: 16, 25

Description	Quantity	
	Mounting type	
	NZ/NY/NW/NT/NM2	NM1/NM3
Motor flange	1	1
Motor pulley	1	1
Return plate	1	1
Timing belt	1	1
Hexagon socket head cap screw (to mount the return plate)	4	4
Hexagon socket head cap screw (to mount the motor flange)	2	2
Hexagon socket head cap screw (to secure the pulley)	1	-
Hexagon socket head set screw (to secure the pulley)	-	1

Slide Table/High Precision Type LESYH Series

Motorless Type

- The motor and motor mounting screws should be provided by the customer.
- Motor shaft type should be cylindrical for the NZ, NY, NX, NW, NM2 mounting types, and D-cut type for the NM1 mounting type.
Motor Mounting: In-line
- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw.
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

LESYH16D: NM1

[Included parts]
Hexagon socket head set screw/MM
Provided by the customer] (Tightening torque: TT [N.m])
Motor mounting screw (M3) * Mount to D-cut surface of the motor shatt. [Provided by the customer] Screw head height 5 or less, O.D. ø6.5 or less

[ncluded parts] Hexagon socket head set screw/2 x M4 x 5 (Tightening torque: 1.5 [N.m])

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the M3 x 4 hexagon socket head set screw
2) Secure the motor to the motor flange with the motor mounting screws (provided by the customer)
3) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
4) Secure the motor flange with the M4 x 5 hexagon socket head set screws.

LESYH25D: NM1

Included parts]
Hexagon socket head set screw/MM
(Tightening torque: TT [N•m]

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head set screw.
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor block with the motor mounting screws (provided by the customer)

LESYH16D: NM2

Mounting procedure

1) Insert the ring spacer into the motor (provided by the customer)
2) Secure the motor hub to the motor (provided by the customer) with the M2.5 x 10 hexagon socket head cap screw.
3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer)
4) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
5) Secure the motor flange with the M4 $x 5$ hexagon socket head set screws.

Dimensions					[mm]
Size	Mounting type	MM	TT	PD	PP
16	NZ	M2.5 x 10	1.0	8	12.5
	NY	M 2.5×10	1.0	8	12.5
	NX	M 2.5×10	1.0	8	7
	NM1	M3 $\times 5$	0.63	5	10.5
	NM2	M 2.5×10	1.0	6	12.4
25	NZ	M 3×12	1.5	14	18
	NY	M4 x 12	3.6	11	18
	NX	M 4×12	3.6	9	5
	NW	M 4×12	3.6	9	12
	NV	M 4×12	3.6	9	5
	NU	M 4×12	3.6	11	12
	NT	M 3×12	1.5	12	18
	NM1	M 4×5	1.5	6.35	2.1
	NM2	M4 x 12	3.6	10	12

Included Parts List

Size: 16

Description	Quantity		
	Mounting type		
	NZNY/NX	NM1	NM2
Motor hub	1	1	1
Hexaon socket head cap screw (to secure the hub)	1	-	1
Motor flange	-	1	1
Hexagon socket head set screw (to secure the hub)		1	-
Hexagon socket head set screw (to secure the motor flange)	-	2	2
Ring spacer	-	-	1

Size: 25

	Quantity	
Description	Mounting type NZ/NY/NXX NW/NV/NU// NT/NM2	NM1
Motor hub	1	1
Hexagon socket head cap screw (to secure the hub)	1	-
Hexagon socket head set screw (to secure the hub)	-	1

LESYH Series

Motor Mounting Parts

Motor Flange Option

A motor can be added to the motorless specification after purchase. The applicable mounting types are shown below. (Excludes options "NM1" and "NM3")
Use the following part numbers to select a compatible motor flange option and place an order.

How to Order

$\mathbf{1}$ Size
$\mathbf{2 5}$
$\mathbf{3 2}$
$\mathbf{F o r}$ the LESYH16

* Please note that the size in the model number is different from the actuator size.

2	Motor mounting position
P	Parallel
D	In-line

3 3
Mounting type
NZ NV NY NU NX NT NW NM2

Compatible Motors and Mounting Types

Applicable motor model		Actuator/Mounting type														
Manufacturer	Series	16						25								
		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	г-V/7	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bullet	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6	\bullet	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-
FANUC CORPORATION	Bis (-B)	\bullet	-	-	-	-	-	(81 only)	-	-	\bullet	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bullet	-	-	-	-	-	-	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	\bullet	-	\bullet	-	-	-	-	-	-	-	\bullet	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	\bullet	-	\bullet	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	\bullet
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	\bullet	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	\bullet	-	-	-	-	-	-	-	$\begin{array}{\|c\|} \hline \mathbf{Q}^{* 1} \\ \text { (MPNP } \\ \text { only) } \end{array}$	-	-	-	\bullet	-	-
Beckhoff Automation GmbH	AM 30/31/80/81	\bullet	-	-	-	-	-	-	-	$\begin{gathered} 0^{* 1} \\ (80 / 81 \\ \text { only) } \end{gathered}$	-	-*1	\bullet	-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bullet	-	-	-	-	-	$\bullet * 1$	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-

* When the LESYH ${ }_{25}^{16} \square$ NM3 $\square-\square$ is purchased, it is not possible to change to other mounting types.
*1 Motor mounting position: In-line only

Dimensions: Motor Flange Option

Motor mounting position: Parallel

Motor flange details
Size: 25, 32

Size 25: NM2

2×FA
depth of counterbore FB

FF

Size 32: NM2

Dimensions

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
$\begin{gathered} 25 \\ \text { (LESYH16) } \end{gathered}$	NZ	M4 x 0.7	7.5	ø46	30	3.7	11	42	M 2.5×10	1.0	M3 x 8	0.63	8	7.5
	NY	M3 x 0.5	5.5	ø45	30	5	11	42	M 2.5×10	1.0	M3 $\times 8$	0.63	8	7.5
	NX	M4 x 0.7	7	ø46	30	3.7	8	42	M 2.5×10	1.0	M3 $\times 8$	0.63	8	4.5
	NM2	$\varnothing 3.4$	7	$\square 31$	30	3.7	8.5	42	M 2.5×10	1.0	M3 $\times 8$	0.63	6	4.8
$\begin{gathered} 32 \\ \text { (LESYH25) } \end{gathered}$	NZ	M5 x 0.8	8.5	$\varnothing 70$	50	4.6	13	60	M3 x 12	1.5	M 4×12	1.5	14	4.5
	NY	M4 x 0.7	7	$\varnothing 70$	50	4.6	13	60	M3 x 12	1.5	$\mathrm{M} 4 \times 12$	1.5	11	4.5
	NW	M5 $\times 0.8$	8.5	$\varnothing 70$	50	4.6	13	60	M 4×12	3.6	$\mathrm{M} 4 \times 12$	1.5	9	4.5
	NU	M5 $\times 0.8$	8.5	$\varnothing 70$	50	4.6	13	60	M 3×12	1.5	$\mathrm{M} 4 \times 12$	1.5	11	4.5
	NT	M5 $\times 0.8$	8.5	$\varnothing 70$	50	4.6	17	60	M3 $\times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	12	8.5
	NM2	M 4×0.7	8	$\square 50$	38.2	-	11.5	60	M3 x 12	1.5	M 4×12	1.5	10	3

LESYH Series

Dimensions: Motor Flange Option

Motor mounting position: In-line

Size: 25, Mounting type: NM2

Motor flange B details

Component Parts

No.	Description	Quantity
$\mathbf{1}$	Motor flange A	1
$\mathbf{2}$	Motor flange B	1
$\mathbf{3}$	Motor hub	1
$\mathbf{4}$	Ring spacer	1
$\mathbf{5}$	Hexagon socket head cap screw (to secure the hub)	1
$\mathbf{6}$	Hexagon socket head cap screw (to mount the motor flange A)	2
$\mathbf{7}$	Hexagon socket head set screw (to secure the motor flange B)	2

Dimensions

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
$\begin{gathered} 25 \\ \text { (LESYH16) } \end{gathered}$	NZ	M4 x 0.7	7.5	ø46	30	3.7	47	45	M2.5 $\times 10$	1.0	M4 $\times 40$	1.5	8	12.5
	NY	M3 x 0.5	6	$\varnothing 45$	30	4.2	47	45	M2.5 $\times 10$	1.0	M4 $\times 40$	1.5	8	12.5
	NX	M4 x 0.7	7.5	ø46	30	3.7	47	45	M2.5 $\times 10$	1.0	M4 $\times 40$	1.5	8	7
	NM2	$\varnothing 3.4$	28	$\square 31$	22	2.5	30	45	M2.5 $\times 10$	1.0	M4 $\times 40$	1.5	6	12.4
$\begin{gathered} 32 \\ \text { (LESYH25) } \end{gathered}$	NZ	M5 x 0.8	8.5	ø70	50	3.3	60	60	M3 $\times 12$	1.5	M6 x 60	5.2	14	18
	NY	M4 x 0.7	8	$\varnothing 70$	50	3.3	60	60	M4 $\times 12$	3.6	M6 $\times 60$	5.2	11	18
	NX	M5 x 0.8	8.5	ø63	40	3.5	63	60	$\mathrm{M} 4 \times 12$	3.6	M6 x 60	5.2	9	5
	NW	M5 x 0.8	8.5	$\varnothing 70$	50	3.3	60	60	$\mathrm{M} 4 \times 12$	3.6	M6 x 60	5.2	9	12
	NV	M4 x 0.7	8	ø63	40	3.3	63	60	$\mathrm{M} 4 \times 12$	3.6	M6 $\times 60$	5.2	9	5
	NU	M5 x 0.8	8.5	$\varnothing 70$	50	3.3	60	60	M 4×12	3.6	M6 x 60	5.2	11	12
	NT	M5 x 0.8	8.5	¢70	50	3.3	60	60	M3 $\times 12$	1.5	M6 x 60	5.2	12	18
	NM2	M4 x 0.7	8	$\square 50$	36	3.3	60	60	M4 x 12	3.6	M6 x 60	5.2	10	12

[^0]: *1 Shaft type: D-cut shaft

[^1]: *1 Shaft type: D-cut shaft

