Rod Type

Selection Procedure

Positioning Control Selection Procedure

Check the work load-speed. (Vertical transfer)

Step 2 Check the cycle time.

Selection Example

Operating conditions

- Workpiece mass: $4[\mathrm{~kg}] \quad$ •Speed: $100[\mathrm{~mm} / \mathrm{s}]$	W
- Acceleration/Deceleration: $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	
- Stroke: $200[\mathrm{~mm}]$	
- Workpiece mounting condition:Vertical upward downward transfer	

Check the work load-speed. <Speed-Vertical work load graph>
Select a model based on the workpiece mass and speed while referencing the speed-vertical work load graph.
Selection example) The LEY16EB can be temporarily selected as a possible candidate based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to the horizontal work load in the specifications

<Speed-Vertical work load graph> (LEY16/Battery-less absolute) on page 449 and the precautions.

Step 2

Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in position of the step data. Therefore, calculate the settling time while referencing the following value.

$$
\mathrm{T} 4=0.2[\mathrm{~s}]
$$

Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=100 / 3000=0.033[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=100 / 3000=0.033[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{200-0.5 \cdot 100 \cdot(0.033+0.033)}{100}=1.97[\mathrm{~s}]$
$\mathrm{T} 4=0.2[\mathrm{~s}]$
The cycle time can be found as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.033+1.967+0.033+0.2=2.233$ [s]
Based on the above calculation result, the LEY16EB-200 should be selected.

Selection Procedure

Pushing Control Selection Procedure

* The duty ratio is a ratio of the operation time in one cycle.

Selection Example

Operating conditions

•Mounting condition: Horizontal (pushing)	\bullet Duty ratio: $18[\%]$
•Attachment weight: $0.2[\mathrm{~kg}]$	\bullet Speed: $100[\mathrm{~mm} / \mathrm{s}]$
- Pushing force: $68[\mathrm{~N}]$	\bullet Stroke: $200[\mathrm{~mm}]$

Check the duty ratio.

<Conversion table of pushing force-duty ratio>
Select the [Pushing force] from the duty ratio while referencing the conversion table of pushing force-duty ratio.
Selection example)
Based on the table below,
-Duty ratio: 18 [\%]
The pushing force set value will be 60 [\%].
<Conversion table of pushing force-duty ratio>
(LEY16/Battery-less absolute)

Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
40 or less	100	No restriction
50	30	45 or less
60	18	15 or less
65	15	10 or less

* [Pushing force set value] is one of the step data input to the controller.
* [Continuous pushing time] is the time that the actuator can continuously keep pushing.

Step 2 Check the pushing force.

<Force conversion graph>
Select a model based on the pushing force set value and force while referencing the force conversion graph.
Selection example)
Based on the graph shown on the right side,

- Pushing force set value: 60 [\%]
-Pushing force: 68 [N]
The LEY16EB can be temporarily selected as a possible candidate.

(LEY16/Battery-less absolute)
*1 Set values for the controller

Step 3

Check the lateral load on the rod end.

<Graph of allowable lateral load on the rod end>
Confirm the allowable lateral load on the rod end of the actuator: LEY16 \square, which has been selected temporarily while referencing the graph of allowable lateral load on the rod end.
Selection example)
Based on the graph shown on the right side,

- Attachment weight: $0.2[\mathrm{~kg}] \approx 2[\mathrm{~N}]$
- Product stroke: 200 [mm]

The lateral load on the rod end is in the allowable range.

Based on the above calculation result, the LEY16EB-200 should be selected.

<Graph of allowable lateral load on the rod end>

LEY Series

Battery-less Absolute (Step Motor 24 VDC)

Speed-Work Load Graph (Guide)

For Battery-less Absolute (Step Motor 24 VDC)

Horizontal

LEY16 \square E $\quad \square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY25 $\square E$
$\nabla \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY32 $\square E$
$\nabla \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY40 $\square E$

Z \backslash for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical

LEY16 \square E

LEY25 $\square E$

LEY32 $\square E$

LEY40 $\square E$

Model Selection LEY Series

Battery-less Absolute (Step Motor 24 VDC)

Force Conversion Graph (Guide)

Battery-less Absolute (Step Motor 24 VDC)
LEY16 \square E

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]

$\mathbf{3 0}{ }^{\circ} \mathbf{C}$ or less	65 or less	100	No restriction
\mathbf{C}}{}	40 or less	100	No restriction
	50	30	45 or less
	60	18	15 or less
	65	15	10 or less

LEY25 $\square E$

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]					
40					$40^{\circ} \mathrm{C}$ or less	50 or less	100	No restriction
:---	:---	:---	:---					

LEY32 $\square E$

| Ambient temperature | Pushing force set value [\%] | Duty ratio [\%] | Continuous pushing time [min] |
| :--- | :--- | :--- | :--- | | $40^{\circ} \mathrm{C}$ or less | 70 or less | 100 | No restriction |
| :--- | :---: | :---: | :---: |

LEY40 $\square E$

[^0]<Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed> Without Load

Model	Lead	Pushing speed $[\mathrm{mm} / \mathrm{s}]$	Pushing force (Setting input value)
LEY16 $\square \mathbf{E}$	A/B/C	21 to 50	45 to 65%
LEY25 $\square \mathbf{E}$	A/B/C	21 to 35	40 to 50%
LEY32 $\square \mathbf{E}$	A	24 to 30	50 to 70%
	$\mathrm{~B} / \mathrm{C}$	21 to 30	
LEY40 $\square \mathbf{E}$	A	24 to 30	21 to 30

There is a limit to the pushing force in relation to the pushing speed. If the product is operated outside of the range (low pushing force), the completion signal [INP] may be output before the pushing operation has been completed (during the moving operation).
If operating with the pushing speed below the min. speed, please check for operating problems before using the product.
<Set Values for Vertical Upward Transfer Pushing Operations>
For vertical loads (upward), set the pushing force to the max. value shown below and operate at the work load or less.

Model	LEY16 \square			LEY25 $\square \mathbf{E}$			LEY32 $\square \mathbf{E}$			LEY40 $\square \mathbf{E}$		
Lead	A	B	C	A	B	C	A	B	C	A	B	C
Work load $[\mathrm{kg}]$	1	1.5	3	2.5	5	10	4.5	9	18	7	14	28
Pushing force	65%				50%				70%			
65%												

LEY Series

Battery-less Absolute (Step Motor 24 VDC)

Graph of Allowable Lateral Load on the Rod End (Guide)

* The changes in the graph waveforms are due to the difference in components of different product strokes.
$[$ Stroke $]=[$ Product stroke $]+[$ Distance from the rod end to the
center of gravity of the workpiece $]$

Rod Displacement: δ [mm]

Size	30	50	100	150	200	250	300	350	400	450	500
$\mathbf{1 6}$	± 0.4	± 0.5	± 0.9	± 0.8	± 1.1	± 1.3	± 1.5	-	-	-	-
$\mathbf{2 5}$	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 1.7	-	-
$\mathbf{3 2 , 4 0}$	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8

* The values without a load are shown.

Non-rotating Accuracy of Rod

Size	Non-rotating accuracy θ
16	$\pm 1.1^{\circ}$
25	$\pm 0.8^{\circ}$
32	$\pm 0.7^{\circ}$
40	

Failure to do so may result in the deformation of the non-rotating guide, abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.

Rod Type
 LEY Series Ley 16, 25, 32,40

RoHS

* For details, refer to page 1343 and onward.

For details on controllers, refer to the next page.

1 Size
16
25
32
40

(2) Moto	or mounting positio	Motor cover direction
Symbol	Motor mounting position	Motor cover direction
Nil	Top side parallel	-
D	In-line	-*1
D1		Left*2
D2		Right*2
D3		Top*2
D4		Bottom*2

4 Lead [mm]

Symbol	LEY16	LEY25	LEY32/40
A	10	12	16
B	5	6	8
C	2.5	3	4

5 Stroke $^{* 3}[\mathrm{~mm}]$		
Stroke	Note	
	Size	Applicable stroke
$\mathbf{3 0}$ to $\mathbf{3 0 0}$	$\mathbf{1 6}$	$30,50,100,150,200,250,300$
$\mathbf{3 0}$ to $\mathbf{4 0 0}$	$\mathbf{2 5}$	$30,50,100,150,200,250,300$, 350,400
$\mathbf{3 0}$ to 500	$\mathbf{3 2 / 4 0}$	$30,50,100,150,200,250,300$, $350,400,450,500$

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

Mounting*5

Symbol	Type	Motor mounting position		
		Parallel	In-line	
Nil	Ends tapped/ Body bottom tapped*6	\bullet	\bullet	
L	Foot	\bullet	-	
F	Rod flange*6	$\bullet * 8$	\bullet	
G	Head flange*6	$\bullet * 9$	-	
D	Double clevis*7	\bullet	-	

Actuator cable type/length

Robotic cable

Nil	None	R8	$8^{* 10}$
R1	1.5	RA	$10^{* 10}$
R3	3	RB	$15^{* 10}$
R5	5	RC	$20^{* 10}$

\triangle Caution

[CE/UKCA-compliant products]

EMC compliance was tested by combining the electric actuator LEY series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to pages 1077 and 1078.

[UL certification]

The JXC series controllers used in combination with electric actuators are UL certified.
*7 For the mounting of the double clevis type, use the actuator within the following stroke range
. LEY16: 100 or less . LEY25: 200 or less . LEY32/40: 200 or less
*8 The rod flange type is not available for the LEY16 with strokes of 50 mm or less and LEY40 with strokes of 30 mm or less, and motor option "With lock/motor cover."
*9 The head flange type is not available for the LEY32/40.
*10 Produced upon receipt of order
*11 The DIN rail is not included. It must be ordered separately.
*12 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link.
Select "Nil," "1," "3," or "5" for parallel input.
The actuator and controller are sold as a package.
Confirm that the combination of the controller and actuator is correct.

<Check the following before use.>

(1) Check the actuator label for the model number. This number should match that of the controller.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

LEY25EB-100

Refer to the Operation Manual for using the products.
Please download it via our website: https://www.smcworld.com

| Type | Step data input type | EtherCAT direct input type | EtherCAT direct input type with STO sub-function | EtherNet/IPTM direct input type | EtherNet\|l| ${ }^{\text {direct }}$ input type with STO subb-function | PROFINET direct input type | PROFINET direct input type with STO sub-function | DeviceNet ${ }^{\circledR}$ direct input type | IO-Link direct input type | 10-Link direct input type with STO sub-function | CC-Link direct input type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Series | $\begin{aligned} & \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$ | JXCE1 | JXCEF | JXC91 | JXC9F | JXCP1 | JXCPF | JXCD1 | JXCL1 | JXCLF | JXCM1 |
| Features | Parallel I/O | EtherCAT direct input | EtherCAT direct input with STO sub-function | EtherNet/IPTM direct input | EtherNetIIPTM direct input with STO sub-function | PROFINET direct input | PROFINET direct input with STO sub-function | DeviceNet ${ }^{\circledR}$ direct input | IO-Link direct input | IO-Link direct input with STO sub-function | CC-Link direct input |
| Compatible motor | Battery-less absolute (Step motor 24 VDC) | | | | | | | | | | |
| Max. number of step data | 64 points | | | | | | | | | | |
| Power supply voltage | 24 VDC | | | | | | | | | | |
| Reference page | 1017 | 1063 | | | | | | | | | |

Specifications

Battery－less Absolute（Step Motor 24 VDC）

Model				LEY16口E			LEY25 $\square \mathrm{E}$			LEY32 $\square \mathrm{E}$			LEY40 $\square \mathrm{E}$		
Actuator specifications	Work load ［kg］＊1	Horiz	（ 3000 ［mm／s $\left.{ }^{2}\right]$ ）	6	17	30	20	40	60	30	45	60	50	60	80
		Horizonta	（ $\left.2000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]\right)$	10	23	35	30	55	70	40	60	80	60	70	90
		Vertical	（ 3000 ［ $\left.\mathrm{mm} / \mathrm{s}^{2}\right]$ ）	2	4	8	8	16	30	11	22	43	13	27	53
	Pushing force［ N$]^{* 2 * 3 * 4}$			14 to 38	27 to 74	51 to 141	63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
	Speed［mm／s］${ }^{* 4}$			15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125	24 to 500	12 to 300	6 to 150	24 to 500	12 to 300	6 to 150
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］			3000											
	Pushing speed［mm／s］＊5			50 or less			35 or less			30 or less			30 or less		
	Positioning repeatability［mm］			± 0.02											
	Lost motion［mm］＊6			0.1 or less											
	Screw lead［mm］			10	5	2.5	12	6	3	16	8	4	16	8	4
	Impact／Vibration resistance［m／s $\left.{ }^{2}\right]^{* 7}$			50／20											
	Actuation type			Ball screw＋Belt（LEY \square ）／Ball screw（LEY $\square \mathrm{D}$ ）											
	Guide type			Sliding bushing（Piston rod）											
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40											
	Operating humidity range［\％RH］			90 or less（No condensation）											
	Enclosure			IP40（Excludes the operation hole for the manual override screw on the motor cover when motor option＂C＂or ＂W＂is selected for motor type＂Nil＂）											
	Motor size				$\square 28$		$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Battery－less absolute（Step motor 24 VDC）											
	Encoder			Battery－less absolute											
	Power supply voltage［V］			24 VDC $\pm 10 \%$											
	Power［W］${ }^{* 8 * 10}$			Max．power 43			Max．power 48			Max．power 104			Max．power 106		
－	Type＊9			Non－magnetizing lock											
或	Holding force［N］			20	39	78	78	157	294	108	216	421	127	265	519
皆：	Power［W］＊10			2.9			5			5			5		
－	Rated voltage［V］			24 VDC $\pm 10 \%$											

＊1 Horizontal：The maximum value of the work load．An external guide is necessary to support the load（Friction coefficient of guide： 0.1 or less）．The actual work load and transfer speed change according to the condition of the external guide．Also，speed changes according to the work load．Check the＂Model Selection＂on pages 422 and 423.
Vertical：Speed changes according to the work load．Check the＂Model Selection＂on pages 421 and 423.
The values shown in（ ）are the acceleration／deceleration．
Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less．
$* 2$ Pushing force accuracy is $\pm 20 \%$（F．S．）．
＊3 The pushing force values for LEY16 \square E are 20% to 65% ，for LEY25 \square E are 30% to 50% ，for LEY32 $\square E$ are 30% to 70% ，and for LEY40 $\square E$ are 35% to 65% ． The pushing force values change according to the duty ratio and pushing speed．Check the＂Model Selection＂on page 424.
＊4 The speed and force may change depending on the cable length，load，and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20% ）
＊5 The allowable speed for pushing operation．When push conveying a workpiece，operate at the vertical work load or less．
＊6 A reference value for correcting errors in reciprocal operation
＊7 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊8 Indicates the max．power during operation（including the controller）．This value can be used for the selection of the power supply．
＊9 With lock only
＊10 For an actuator with lock，add the power for the lock．

Weight

Weight: Top Side Parallel Motor Type

Series	LEY16E							LEY25E									LEY32E										
Stroke [mm]	30	50	100	150	200	250	300	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	0.75	0.79	0.9	1.04	1.15	1.26	1.37	1.21	1.28	1.45	1.71	1.89	2.06	2.24	2.41	2.59	2.13	2.24	2.53	2.81	3.21	3.5	3.78	4.07	4.36	4.64	4.93
Series	LEY40E																										
Stroke [mm]	30	50	100	150	200	250	300	350	400	450	500																
Product weight [kg]	2.44	2.55	2.84	3.12	3.52	3.81	4.09	4.38	4.67	4.95	5.24																

Weight: In-line Motor Type

Series	LEY16DE							LEY25DE									LEY32DE										
Stroke [mm]	30	50	100	150	200	250	300	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	0.72	0.76	0.87	1.01	1.12	1.23	1.34	1.2	1.27	1.44	1.7	1.88	2.05	2.23	2.4	2.58	2.12	2.23	2.52	2.8	3.2	3.49	3.77	4.06	4.35	4.63	4.92

Series	LEY40DE										
Stroke [mm]	30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	2.43	2.54	2.83	3.11	3.51	3.8	4.08	4.37	4.66	4.94	5.24

Additional Weight

Additional Weight

Size		$\mathbf{1 6}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Lock/Motor cover	0.16	0.29	0.57	0.57	
Rod end male thread	Male thread	0.01	0.03	0.03	0.03
	Nut	0.01	0.02	0.02	0.02
Foot bracket (2 sets including mounting bolt)	0.06	0.08	0.14	0.14	
	Rod flange (including mounting bolt)	0.13	0.17	0.20	0.20
	Head flange (including mounting bolt)				
Double clevis (including pin, retaining ring, and mounting bolt)	0.08	0.16	0.22	0.22	

LEY Series

Construction

25
Top side parallel motor type: LEY 32E
40

Top side parallel motor type, With lock/motor cover

Top side parallel motor type: LEY16E

Construction

In-line motor type: LEY16DE

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	Synthetic resin/Alloy steel	
$\mathbf{4}$	Piston	Aluminum alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	Synthetic resin	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Bearing alloy	
12	Bearing	-	
13	Return box	Aluminum die-cast	Coating
14	Return plate	Aluminum die-cast	Coating
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	Synthetic resin	Stroke 101 mm or more
18	Screw shaft pulley	Aluminum alloy	
19	Motor pulley	Aluminum alloy	
20	Belt	-	
21	Seal	NBR	
22	Retaining ring	Steel for spring	Phosphate coating
23	Motor	-	
24	Motor cover	Aluminum alloy	Anodized/LEY16 only
	Synthetic resin		
25	Grommet	Synthetic resin	Only "With motor cover"

No.	Description	Material	Note
$\mathbf{2 6}$	Motor block	Aluminum alloy	Anodized
$\mathbf{2 7}$	Motor adapter	Aluminum alloy	Anodized/LEY16, 25 only
$\mathbf{2 8}$	Hub	Aluminum alloy	
$\mathbf{2 9}$	Spider	NBR	
$\mathbf{3 0}$	Motor cover with lock	Aluminum alloy	Only "With lock/motor cover"/LEY25, 32, 40
$\mathbf{3 1}$	Cover support	Aluminum alloy	Only "With lock/motor cover"/LEY25, 32, 40
$\mathbf{3 2}$	Socket (Male thread)	Free cutting carbon steel	Nickel plating
$\mathbf{3 3}$	Nut	Alloy steel	Zinc chromating
$\mathbf{3 4}$	End cover	Aluminum alloy	Anodized/LEY16 only
$\mathbf{3 5}$	Rubber bushing	NBR	LEY16 only

Replacement Parts (Top side parallel only)/Belt

No.	Size	Order no.
20	16	LE-D-2-7
	25	LE-D-2-2
	32,40	LE-D-2-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

LEY Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Top Side Parallel Motor

Size	Stroke range	A	B	C	D	EH	EV	H	J	K	L	M	O	R	S	T	T2	U	V			Y
	[mm]	A	B	C	D			H	J	K	L	M		R	S	T	T2	U	V	Without lock	With lock	Y
16	30 to 100	101	90.5	10	16	34	34.3	M5 x 0.8	18	14	10.5	25.5	M4 x 0.7	7	35	90.5	-	0.5	28	100.5	145.5	22.5
	105 to 300	121	110.5																			
25	30 to 100	130.5	116	13	20	44	45.5	M8 $\times 1.25$	24	17	14.5	34	M5 x 0.8	8	46	92	7.5	1	42	88.5	129	26.5
	105 to 400	155.5	141																			
32	30 to 100	148.5	130	13	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6 x 1.0	10	60	118	8.5	1	56.4	98.5	141.5	34
	105 to 500	178.5	160																			
40	30 to 100	148.5	130	13	25	51	56.5	M8x 1.25	31	22	18.5	40	M6 x 1.0	10	60	118	8.5	1	56.4	120.5	163.5	34
	105 to 500	178.5	160																			

Body Bottom Tapped

Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
16	30 to 35	15	35.5	17	23.5	23	40	M4 x 0.7	5.5	3	4
	40 to 100			32	31						
	105 to 300			62	46		60				
25	30 to 35	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100				41						
	105 to 120			42			75				
	125 to 200			59	49.5						
	205 to 400			76	58						
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	30 to 35	25	55	22	36	30	50	M6x 1	8.5	5	6
	40 to 100			36	43						
	105 to 120			36			80				
	125 to 200			53	51.5						
	205 to 500			70	60						

Dimensions: Top Side Parallel Motor

25 A
With lock/motor cover: LEY 32EB- \square W
40 C

A
With motor cover: LEY16EB- $\square \mathrm{C}$

A
With lock/motor cover: LEY16EB- $-\square \mathbf{W}$

LEY Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: In-line Motor

*1 This is the range within which the rod can move when it returns to origin. Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
*5 Refer to page 456 for motor cover dimensions of the LEY16.

Size	Stroke range [mm]	A		B	C	CL	CV	D	EH	EV	H	J	K	L	M	O1	R	S	T	T2	U	X2		Y
		Without lock	With lock																			Without lock	With lock	
16	30 to 100	186.5	231.5	94	10	-	* 6	16	34	34.3	M5 x 0.8	18	14	10.5	25.5	M4 x 0.7	7	*5	35.5	-	0.5	82	127	26
	105 to 300	206.5	251.5	114																				
25	30 to 100	198.5	239	115.5	13	46	54.5	20	44	45.5	M8 x 1.25	24	17	14.5	34	M5 x 0.8	8	45	46.5	7.5	1.5	68.5	109	26
	105 to 400	223.5	264	140.5																				
32	30 to 100	220	263	128	13	60	69.5	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6 x 1	10	60	61	8.5	1	73.5	116.5	32
	105 to 500	250	293	158																				
40	30 to 100	242	285	128	13	60	69.5	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6x 1	10	60	61	8.5	1	95.5	138.5	32
	105 to 500	272	315	158																				

*6 Refer to page 456.
Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
16	30 to 35	15	17	23.5	23	40	M4 x 0.7	5.5	3	4
	40 to 100		32	31		40				
	105 to 300		62	46		60				
25	30 to 35	20	24	32	29		M5 x 0.8	6.5	4	5
	40 to 100					50				
	105 to 120		42	41		75				
	125 to 200		59	49.5						
	205 to 400		76	58						
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	30 to 35	25	22	36	30	50	M6x 1	8.5	5	6
	40 to 100									
	105 to 120		36	43		80				
	125 to 200		53	51.5						
	205 to 500		70	60						

Dimensions: In-line Motor

With lock/motor cover: LEY 32DEB- \square W
 40 C

A
With motor cover: LEY16D \square EB- \square C C

*1 Refer to the table below.

Motor Cover Direction

CV Dimensions (Size 16)

Motor cover direction	$\mathbf{C V}$
\mathbf{D}_{1}	35.5
\mathbf{D}_{2}	35.5
\mathbf{D}_{3}	48.3
\mathbf{D}_{4}	40.2

LEY Series

Dimensions

$[\mathrm{mm}]$								
Size	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{1}}$	$\boldsymbol{\varnothing D}$	$\mathbf{H}_{\mathbf{1}}$	\mathbf{K}	$\mathbf{L}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{2}}$	$\mathbf{M M}$
$\mathbf{1 6}$	13	12	16	5	14	24.5	14	$\mathrm{M} 8 \times 1.25$
$\mathbf{2 5}$	22	20.5	20	8	17	38	23.5	$\mathrm{M} 14 \times 1.5$
$\mathbf{3 2 , 4 0}$	22	20.5	25	8	22	42.0	23.5	$\mathrm{M} 14 \times 1.5$

* The L_{1} measurement is when the unit is in the original position. At this position, 2 mm at the end.

Foot: $\operatorname{LEY}_{32}^{16} \underset{40}{25} \underset{C}{\text { A }}-\square \square \square L$
 40

Included parts
• Foot bracket
• Body mounting bolt

Outward mounting

[mm]														
Size	Stroke range [mm]	A	LS	LS 1	LL	LD	LG	LH	LT	LX	LY	LZ	X	Y
16	30 to 100	106.1	76.7	16.1	5.4	6.6	2.8	24	2.3	48	40.3	62	9.2	5.8
16	105 to 300	126.1	96.7											
25	30 to 100	136.6	98.8	19.8	8.4	6.6	3.5	30	2.6	57	51.5	71	11.2	5.8
	105 to 400	161.6	123.8											
32	30 to 100	155.7	114	19.2	11.3	6.6	4	36	3.2	76	61.5	90	11.2	7
40	105 to 500	185.7	144											

[^1]* The A measurement is when the unit is in the original position. At this position, 2 mm at the end.

Battery-less Absolute (Step Motor 24 VDC)

Dimensions

Rod flange: LEY16 $\square E B-\square \square \square F$

25 A
Rod flange: LEY ${ }_{40}^{32} \square E \mathrm{CB}-\square \square \square \mathrm{F}$

25 A
Double clevis: LEY 32 EB- $\square \square \square$ D

SSMC

A
Head flange: LEY16EB- $\square \square \square G$

A Head flange: LEY25EB- $\square \square \square \mathbf{G}$

* The head flange type is not available for the LEY32/40.

Included parts
- Flange
- Body mounting bolt

Rod/Head Flange
[mm]

Size	FD	FT	FV	FX	FZ	LL	M
$\mathbf{1 6}$	6.6	8	39	48	60	2.5	-
$\mathbf{2 5}$	5.5	8	48	56	65	6.5	34
$\mathbf{3 2 , 4 0}$	5.5	8	54	62	72	10.5	40

Material: Carbon steel (Nickel plating)

Included parts
Double clevis
Body mounting bolt
Clevis pin
Retaining ring

* Refer to pages 499 and 500 for details on the rod end nut and mounting bracket.
Double Clevis

Size	Stroke range [mm]	A		CL	CB	CD	CT
16	30 to 100	128		119	20	8	5
25	30 to 100	160.		150.5	-	10	5
	105 to 200	185.		175.5			
32	30 to 100	180.		170.5	-	10	6
40	105 to 200	210.		200.5			
Size	Stroke range [mm]	CU	CW	CX	CZ	L	RR
16	30 to 100	12	18	8	16	10.5	9
25	30 to 100	14	20	18	36	14.5	10
	105 to 200						
32	30 to 100	14	22	18	36	18.5	10
40	105 to 200						

Material: Cast iron (Coating)

* The A and CL measurements are when the unit is in the original position. At this position, 2 mm at the end.

LEY Series

Accessory Mounting Brackets 1

Accessory Brackets/Support Brackets

Double Knuckle Joint
Y-G02
-G04
Y-G05
Y-G10

Material: Cast iron

Part no.	Applicable size	A	A1	E_{1}	L1	MM	R1
Y-G02	16	34	8.5	$\square 16$	25	M8 $\times 1.25$	10.3
Y-G04	25, 32, 40	42	16	ø22	30	M14 $\times 1.5$	12
Y-G05	63	56	20	ø28	40	M18 $\times 1.5$	16
Part no.	Applicable size	\mathbf{U}_{1}	NDH10	NX	NZ	L	icable part no.
Y-G02	16	11.5	$8{ }_{0}^{+0.058}$	$8{ }_{+0.2}^{+0.4}$	16	21	G02
Y-G04	25, 32, 40	14	$10^{+0.058}$	$18{ }_{+0.3}^{+0.5}$	36	41.6	G04
Y-G05	63	20	$14{ }_{0}^{+0.070}$	$22+{ }_{+0.3}^{+0.5}$	44	50.6	G05

Rod End Nut

Material: Carbon steel
[mm]

								[mm]
Part no.	Applicable size	$\mathbf{D d 9}$	\mathbf{L}_{1}	\mathbf{L}_{2}	\mathbf{d}	\mathbf{m}	\mathbf{t}	Retaining ring
IY-G02	$\mathbf{1 6}$	$8_{-0.076}^{-0.040}$	21	16.2	7.6	1.5	0.9	Type C retaining ing8

Mounting Bracket Part Nos.

Mounting bracket	Order qty.	Aplicable size					Contents
Foot bracket	$2^{* 1}$	LEY-L016	LEY-L025	LEY-L032	LEY-L063	LEY-L100	Foot bracket x 2 Mounting bolt x 4
Flange	1	LEY-F016	LEY-F025	LEY-F032	LEY-F063	LEY-F100	Flange x 1 Mounting bolt x 4
Double clevis	1	LEY-D016	LEY-D025	LEY-D032	LEY-D063	D5080	Clevis x 1 Mounting bolt x 4 Clevis pin x 1 Type C retaining ring for axis x 2

[^2]| Part
 no. | Applicable
 size | \mathbf{A} | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{E}_{\mathbf{1}}$ | $\mathbf{L}_{\mathbf{1}}$ | $\mathbf{M M}$ | $\mathbf{R}_{\mathbf{1}}$ | $\mathbf{U}_{\mathbf{1}}$ | $\mathbf{N D}_{\mathbf{H 1 0}}$ | $\mathbf{N X}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I-G02 | $\mathbf{1 6}$ | 34 | 8.5 | $\square 16$ | 25 | $\mathrm{M} 8 \times 1.25$ | 10.3 | 11.5 | $8_{0}^{+0.058}$ | $8_{0}^{-0.2}$ |
| I-G04 | $\mathbf{2 5 , 3 2 , 4 0}$ | 42 | 14 | $\varnothing 22$ | 30 | $\mathrm{M} 14 \times 1.5$ | 12 | 14 | $10_{0}^{+0.058}$ | $18_{-0.0}^{-0.3}$ |
| I-G05 | $\mathbf{6 3}$ | 56 | 18 | $\varnothing 28$ | 40 | $\mathrm{M} 18 \times 1.5$ | 16 | 20 | $14_{0}^{+0.078}$ | $22_{-0.5}^{-0.3}$ |

Knuckle Pin

* Common with double clevis pin

Accessory Mounting Brackets LEY Series

Simple Joint Brackets * The joint is not included for type A and type B mounting brackets. Therefore, it must be ordered separately

Joint and Mounting Bracket (Type A/B)/Part No.

Allowable Eccentricity			
Applicable size	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Eccentricity tolerance	± 1		
Backlash	0.5		

<How to Order>
or joint is not included for type A and type B mounting brackets. Therefore, it must be ordered separately Example) EY-U025 YA-03

Type B Mounting Bracket

Material: Stainless steel
[mm]

Part no.	Applicable size	\mathbf{B}	\mathbf{D}	\mathbf{E}	\mathbf{J}	\mathbf{M}	$\varnothing \mathbf{0}$	
YB-03	$\mathbf{2 5 , 3 2 , 4 0}$	12	7	25	9	34	11.5 depth 7.5	
Part no.	Applicable size	$\mathbf{T}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$	\mathbf{V}	\mathbf{W}	$\mathbf{R S}$	Weight $[\mathrm{g}]$	
YB-03	$\mathbf{2 5 , 3 2 , 4 0}$	6.5	10	18	50	9	80	

Joint and Mounting Bracket (Type A/B)/Part No.

LEY Series
 Accessory Mounting Brackets 2

Dimensions: Piston Rod Accessories

Floating joint: JA

Size	Part no.	M	A	B	C	øD	E	F	G	H	P	U	Load [kN]	Weight [g]	Rotating angle
100	JAH50-20-150	M20 x 1.5	101	28	31	59.5	11.5	24	16	32	18	2	18	1080	$\pm 0.5^{\circ}$

* Black color

Rod clevis: GKM (ISO 8140)

Size	Part no.	e	b	d	øf h11 (Shaft)	$\boldsymbol{\text { of ня }}$ (Hole)	\boldsymbol{e}_{1}	\mathbf{c} (Min.)	\mathbf{a} (Max.)
$\mathbf{1 0 0}$	GKM20-40	M20 x 1.5	$20_{+0.15}^{+0.5}$	80	20	20	105	40	40

* Supplied with clevis pin and clevis pin bracket

Rod end: KJ (ISO 8139)

$[\mathrm{lmm}]$									
Size	Part no.	\mathbf{d}_{3}	$\varnothing \mathbf{d}_{1}$ н9	\mathbf{h}	\mathbf{d}_{6} $($ Max. $)$	$\mathbf{b}_{1 \text { h12 }}$	ℓ $($ Min. $)$	α	ℓ_{3}
$\mathbf{1 0 0}$	KJ20D	M20 $\times 1.5$	20	77	50	25	33	4°	27

LEY Series
Auto Switch Mounting

Auto Switch Proper Mounting Position

Applicable auto switch: D-M9 \square (V), D-M9 $\square E(V)$, D-M9 $\square W(V)$, D-M9 $\square A(V)$

Size	Stroke range	Auto switch position				Return to origin distance	Operating range
		Leftward mounting		Rightward mounting			
		A	B	C	D	E	-
16	10 to 100	21.5	46.5	33.5	34.5	(2)	2.9
	105 to 300	41.5		53.5			
25	15 to 100	27	62.5	39	50.5	(2)	4.2
	105 to 400	52		64			
32/40	20 to 100	30.5	65.5	42.5	53.5	(2)	4.9
	105 to 500	60.5		72.5			
63	50 to 200	37	86	49	74	(4)	9.8
	205 to 500	72		84			
	505 to 800	107		119			

* The values in the table to the left are to be used as a reference when mounting auto switches for stroke end detection. Adjust the auto switch after confirming the operating conditions in the actual setting.
An auto switch cannot be mounted on the same side as a motor.
For LEYG series models (with a guide), an auto switch cannot be mounted on the guide attachment side (rod side). Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approx. $\pm 30 \%$ dispersion). It may change substantially depending on the ambient environment.

Auto Switch Mounting

Size: 16, 25, 32, 40, 63

Tightening Torque for Auto Switch Mounting Screw [N.m]

Auto switch model	Tightening torque
D-M9 $\square(\mathbf{V})$	
D-M9 $\square \mathbf{E}(\mathbf{V})$ D-M9 $\square \mathbf{W}(\mathbf{V})$	0.05 to 0.15
D-M9 $\square \mathbf{A (V)}$	0.05 to 0.10

* When tightening the auto switch mounting screw (included with the auto switch), use a watchmaker's screwdriver with a handle diameter of 5 to 6 mm .

Size: 100

A switch spacer is required in order to mount an auto switch.
When mounting an auto switch, first, hold a switch spacer between your fingers and press it into the slot. When doing this, confirm that it is set in the correct mounting orientation, or reinsert it if necessary. Next, insert the auto switch into the slot and slide it until it is positioned under the switch spacer. After confirming the mounting position, use a flat head watchmaker's screwdriver to tighten the included auto switch mounting screw.

Switch Spacer Part No.

Switch spacer	BMY3-016

Tightening Torque for Auto Switch Mounting Screw

Auto switch model	Tightening torque
$\left.\begin{array}{l}\text { D-M9 } \square(V) \\ \text { D-M9 } \\ \mathbf{W W}\end{array}\right)$	0.10 to 0.15

Solid State Auto Switch Direct Mounting Type D-M9N(V)/D-M9P(V)/D-M9B(V)

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications
Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

| D-M9 $\square, ~ D-M 9 ~$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | V (With indicator light)

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Sheath	Outside diameter [mm]	ø2.6		
Insulator	Number of cores	3 cores (B	ue/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$ø 0.88$		
Conductor	Effective area [mm^{2}]	0.15		
	Strand diameter [mm]	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)		17		

* Refer to page 1363 for solid state auto switch common specifications.
* Refer to page 1363 for lead wire lengths.

Weight

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

Normally Closed Solid State Auto Switch Direct Mounting Type D-M9NE(V)/D-M9PE(V)/D-M9BE(V)

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 $\square E$, D-M9 \square EV (With indicator light)						
Auto switch model	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less			24 VDC (10	to $28 \mathrm{VDC)}$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standard	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Sheath	Outside diameter $[\mathrm{mm}]$	$\varnothing 2.6$		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	$\varnothing 0.88$		
	Effective area $\left[\mathrm{mm}{ }^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)		17		

* Refer to page 1363 for solid state auto switch common specifications.
* Refer to page 1363 for lead wire lengths.

Weight

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})^{* 1}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})^{* 1}$	68	63	

*1 The 1 m and 5 m options are produced upon receipt of order.

D-M9■EV

2-Color Indicator Solid State Auto Switch Direct Mounting Type D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range \qquad Red LED illuminates. Proper operating range \qquad Green LED illuminates.					
Standard	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)				
Sheath	Outside diameter $[\mathrm{mm}]$	$\varnothing 2.6$						
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)					
	Outside diameter $[\mathrm{mm}]$	$\varnothing 0.88$						
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15						
	Strand diameter $[\mathrm{mm}]$	$\varnothing 0.05$						
Min. bending radius [mm] (Reference values)						17		

* Refer to page 1363 for solid state auto switch common specifications.
* Refer to page 1363 for lead wire lengths.

Weight

Auto switch model				D-M9NW(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW(V)	D-M9BW(V)
	$1 \mathrm{~m}(\mathbf{M})$	14		13
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

D-M9 $\square W$

D-M9 $\square W V$

LEY/LEYG Series Battery-less Absolute Encoder Type Specific Product Precautions

\triangle

Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.

Handling

\triangle Caution

1. Absolute encoder ID mismatch error at the first connection

In the following cases, an "ID mismatch error" alarm occurs after the power is turned ON. Perform a return to origin operation after resetting the alarm before use.
When an electric actuator is connected and the power is turned ON for the first time after purchase*1

- When the actuator or motor is replaced
- When the controller is replaced
*1 If you have purchased an electric actuator and controller with the set part number, the pairing may have already been completed and the alarm may not be generated.
"ID mismatch error"
Operation is enabled by matching the encoder ID on the electric actuator side with the ID registered in the controller. This alarm occurs when the encoder ID is different from the registered contents of the controller. By resetting this alarm, the encoder ID is registered (paired) to the controller again.

When a controller is changed after pairing is completed					
	Encoder ID no. (* Numbers below are examples.)				
Actuator	17623	17623	17623	17623	
Controller	17623	17699	17699	17623	
ID mismatch error occurred?	No	Yes	Error reset \Rightarrow No		

The ID number is automatically checked when the control power supply is turned ON.
An error is output if the ID number does not match.
2. In environments where strong magnetic fields are present, use may be limited.
A magnetic sensor is used in the encoder. Therefore, if the actuator motor is used in an environment where strong magnetic fields are present, malfunction or failure may occur.
Do not expose the actuator motor to magnetic fields with a magnetic flux density of 1 mT or more.
When installing an electric actuator and an air cylinder with an auto switch (ex. CDQ2 series) or multiple electric actuators side by side, maintain a space of 40 mm or more around the motor. Refer to the construction drawing of the actuator motor.

An air cylinder with an auto switch cannot be installed in the shaded area.

- When lining up actuators

SMC actuators can be used with their motors adjacent to each other. However, for actuators with a built-in auto switch magnet, maintain a space of 40 mm or more between the motors and the position where the magnet passes.
For the LEY series, the magnet is in the piston portion. (Refer to the construction drawings in the catalog for details.)

0
Can be used with their motors
adjacent to each other

- Do not allow the motors to be in close proximity to the position where the magnet passes.

Electric actuator built-in
 magnet portion (Table unit)
3. The connector size of the motor cable is different from that of the electric actuator with an incremental encoder. The motor cable connector of an electric actuator with a battery-less absolute encoder is different from that of an electric actuator with an incremental encoder. As the connector cover dimensions are different, take the dimensions below into consideration during the design process.

Battery-less absolute encoder connector cover dimensions

[^0]: | Ambient temperature Pushing force set value [\%] | Duty ratio [\%] | Continuous pushing time [min] |
 | :--- | :--- | :--- | :--- | $40^{\circ} \mathrm{C}$ or less $\quad 65$ or less

 100 No restriction

[^1]: Material: Carbon steel (Chromating)

[^2]: *1 When ordering foot brackets, order 2 pieces per actuator.

